留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法

黄俊生 苏洪涛

黄俊生, 苏洪涛. 二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法[J]. 仁和测试, 2020, 42(7): 1557-1565. doi: 10.11999/JEIT190429
引用本文: 黄俊生, 苏洪涛. 二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法[J]. 仁和测试, 2020, 42(7): 1557-1565. doi: 10.11999/JEIT190429
Junsheng HUANG, Hongtao SU. Joint Transmitting Subarray Partition and Beamforming Design Method Based on Two-Dimensional Phased-MIMO Radar[J]. Rhhz Test, 2020, 42(7): 1557-1565. doi: 10.11999/JEIT190429
Citation: Junsheng HUANG, Hongtao SU. Joint Transmitting Subarray Partition and Beamforming Design Method Based on Two-Dimensional Phased-MIMO Radar[J]. Rhhz Test, 2020, 42(7): 1557-1565. doi: 10.11999/JEIT190429

二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法

doi: 10.11999/JEIT190429
基金项目: 国家自然科学基金(61372134)
详细信息
    作者简介:

    黄俊生:男,1990年生,博士生,研究方向为自适应信号处理、雷达自适应抗干扰

    苏洪涛:男,1974年生,教授,研究方向为自适应信号处理、雷达自适应抗干扰、超视距雷达技术

    通讯作者:

    苏洪涛 suht@xidian.edu.cn

  • 中图分类号: TN958

Joint Transmitting Subarray Partition and Beamforming Design Method Based on Two-Dimensional Phased-MIMO Radar

Funds: The National Natural Science Foundation of China(61372134)
  • 摘要: 为了有效地抑制干扰信号并进一步提高雷达系统的性能,该文提出一种基于2维相控阵-MIMO雷达的联合发射子阵划分和波束形成设计方法。该方法首先将MIMO雷达系统的发射阵列等分成一定数目的非重叠子阵并给每个天线分配相同的发射能量,以确保发射信号具有恒模特性;其次,在一定的约束条件下,以最大化接收波束形成器的输出信干噪比为准则建立关于子阵结构、每个子阵对应的发射波束形成权矢量以及接收波束形成权矢量的优化模型,并采用循环迭代方法进行求解。仿真结果证实了所提方法的正确性和有效性。
  • 图  1  子阵划分结果

    图  2  利用本文方法优化得到的发射方向图

    图  3  利用本文方法优化得到的发射-接收方向图

    图  4  发射方向图的方位(俯仰)维最大增益值随俯仰(方位)角的变化曲线图

    图  5  发射-接收方向图的方位(俯仰)维最大增益值随俯仰(方位)角的变化曲线图

    图  6  输出信干噪比随发射阵列的列数${N_{\rm{t}}}$的变化曲线图

    表  1  循环迭代算法流程

     初始化:初始化子阵个数$K$,目标空间位置$({\theta _0},{\phi _0})$和散射系数${\gamma _0}$, $Q$个依赖于雷达系统发射波形的干扰的空间位置$\{ ({\theta _q},{\phi _q})\} _{q = 1}^Q$和散射
     系数$\{ {\gamma _q}\} _{q = 1}^Q$, $P$个不依赖于雷达系统发射波形的干扰的空间位置$\{ ({\theta _p},{\phi _p})\} _{p = 1}^P$和功率$\{ \gamma _p^2\} _{p = 1}^P$,子阵结构${{{F}}^0}$,发射波束形成权矢量
     $\{ \bar {{w}}_k^0\} _{k = 1}^K$,系统发射总能量$\eta $,终止阈值$\beta $
     步骤 1 固定子阵结构${{{F}}^v}$和发射波束形成权矢量$\{ \bar {{w}}_k^v\} _{k = 1}^K$,根据式(19)计算接收波束形成权矢量${{{g}}^{v + 1}}$
     步骤 2 固定子阵结构${{{F}}^v}$和接收波束形成权矢量${{{g}}^{v + 1}}$,根据式(24)计算发射波束形成权矢量$\{ \bar {{w}}_k^{v + 1}\} _{k = 1}^K$
     步骤 3 固定发射波束形成权矢量$\{ \bar {{w}}_k^{v + 1}\} _{k = 1}^K$和接收波束形成权矢量${{{g}}^{v + 1}}$,根据式(29)和式(30)计算子阵结构${{{F}}^{v + 1}}$
     步骤 4 判断终止条件$|{\rm{SIN} }{ {\rm{R} }^{v + 1} } - {\rm{SIN} }{ {\rm{R} }^v}| \le \beta $是否满足,满足则终止,否则令$v = v+1$并重复步骤1至步骤4。
    下载: 导出CSV
  • [1] 申滨, 赵书锋, 金纯. 基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法[J]. 电子与信息学报, 2018, 40(12): 2970–2978. doi:  10.11999/JEIT180111

    SHEN Bin, ZHAO Shufeng, and JIN Chun. Low complexity iterative parallel interference cancellation detection algorithms for massive MIMO systems[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2970–2978. doi:  10.11999/JEIT180111
    [2] 李慧, 赵永波, 程增飞. 基于线性调频时宽的MIMO雷达正交波形设计[J]. 电子与信息学报, 2018, 40(5): 1151–1158. doi:  10.11999/JEIT170426

    LI Hui, ZHAO Yongbo, and CHENG Zengfei. MIMO radar orthogonal waveform set design based on chirp durations[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1151–1158. doi:  10.11999/JEIT170426
    [3] 王昊, 马启明. 修正主模抑制稳健自适应波束形成算法[J]. 电子与信息学报, 2017, 39(11): 2620–2626. doi:  10.11999/JEIT170236

    WANG Hao and MA Qiming. Modified dominant mode rejection robust adaptive beamforming algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2620–2626. doi:  10.11999/JEIT170236
    [4] ZHOU Gongjian, GUO Zhengkun, CHEN Xi, et al. Statically fused converted measurement kalman filters for phased-array radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 554–568. doi:  10.1109/TAES.2017.2760798
    [5] XIONG Jie, WANG Wenqin, and GAO Kuandong. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. doi:  10.1109/TAES.2017.2756498
    [6] HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation for MIMO SAR system via fast interferometry RPCA method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1774–1787. doi:  10.1109/TGRS.2017.2768243
    [7] 王宇卓, 朱圣棋, 许京伟. MIMO双基地机载雷达距离模糊杂波抑制方法[J]. 雷达学报, 2018, 7(2): 202–211. doi:  10.12000/JR18016

    WANG Yuzhuo, ZHU Shengqi, and XU Jingwei. A range-ambiguous clutter suppression method for MIMO bistatic airborne radar[J]. Journal of Radars, 2018, 7(2): 202–211. doi:  10.12000/JR18016
    [8] 施君南, 纠博, 刘宏伟, 等. 一种基于先验信息的机载MIMO雷达发射方向图设计方法[J]. 电子与信息学报, 2015, 37(5): 1038–1043. doi:  10.11999/JEIT140911

    SHI Junnan, JIU Bo, LIU Hongwei, et al. A beampattern design method for airborne MIMO radar based on prior information[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1038–1043. doi:  10.11999/JEIT140911
    [9] BERGIN J, MCNEIL S, FOMUNDAM L, et al. MIMO phased-array for SMTI radar[C]. 2018 IEEE Aerospace Conference, Big Sky, USA, 2008: 1–7. doi:  10.1109/AERO.2008.4526416.
    [10] HASSANIEN A and VOROBYOV S A. Why the phased-MIMO radar outperforms the phased-array and MIMO radars[C]. The 18th European Signal Processing Conference, Aalborg, Denmark, 2010: 1234–1238. doi:  10.5281/zenodo.42010.
    [11] HASSANIEN A and VOROBYOV S A. Phased-MIMO radar: A tradeoff between phased-array and MIMO radars[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3137–3151. doi:  10.1109/TSP.2010.2043976
    [12] LI Hongbin and HIMED B. Transmit subaperturing for MIMO radars with co-located antennas[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 55–65. doi:  10.1109/JSTSP.2009.2038967
    [13] DELIGIANNIS A, LAMBOTHARAN S, and CHAMBERS J A. Beamforming for fully-overlapped two-dimensional Phased-MIMO radar[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 599–604. doi:  10.1109/RADAR.2015.7131068.
    [14] KHAN W, QURESHI I M, and SULTAN K. Ambiguity function of phased-MIMO radar with colocated antennas and its properties[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1220–1224. doi:  10.1109/LGRS.2013.2290010
    [15] MILLER S L and O'DEA R J. Peak power and bandwidth efficient linear modulation[J]. IEEE Transactions on Communications, 1998, 46(12): 1639–1648. doi:  10.1109/26.737402
    [16] ALIELDIN A, HUANG Yi, and SAAD W M. Optimum partitioning of a phased-MIMO radar array antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2287–2290. doi:  10.1109/LAWP.2017.2714866
    [17] LUO Zhiquan, MA W, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi:  10.1109/MSP.2010.936019
    [18] GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming, version 2.2[OL]. http://cvxr.com/cvx, 2020.
    [19] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 291–342.
    [20] HELMBERG C and RENDL F. Solving quadratic (0, 1)-problems by semidefinite programs and cutting planes[J]. Mathematical Programming, 1998, 82(3): 291–315. doi:  10.1007/bf01580072
  • 1216326058_1548666370_2020072117225220200721202716.mp4
    audio1.mp3
    icoseabtn.png
    Bi-Ning79478664-57d0-4566-81ca-90da72eb2eb0.jpg
    Principles of Surface Potential Estimation in Mixed Electrolyte Solutions_Taking into Account Dielectric Saturation.xml
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  37
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-11
  • 修回日期:  2020-02-27
  • 网络出版日期:  2020-04-30
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回