留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

未来星载SAR技术发展趋势

邓云凯 禹卫东 张衡 王伟 刘大成 王宇

邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi:  10.12000/JR20008
引用本文: 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi:  10.12000/JR20008
DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi:  10.12000/JR20008
Citation: DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi:  10.12000/JR20008

未来星载SAR技术发展趋势

doi: 10.12000/JR20008
基金项目: 国家重点研发计划(2017YFB0502702),国家自然科学基金(61825106)
详细信息
    作者简介:

    邓云凯(1962–),男,湖北荆门人,中科院特聘研究员、博士生导师。长期从事星载成像雷达系统设计、成像基础理论及微波遥感理论研究,曾任我国第1颗微波成像雷达卫星主任设计师,承担了多个国家重大专项和重大型号工程,并任副总师和副总指挥,曾获得国家科技进步一等奖、国家技术发明二等奖、国防科技进步一等奖、军队科技进步一等奖等。E-mail: ykdeng@mail.ie.ac.cn

    禹卫东(1969–),男,河南巩义人,中科院特聘研究员、博士生导师,国家万人计划-领军人才。长期从事机载、星载合成孔径雷达系统设计和研制工作,先后负责我国多个星载SAR型号工程项目,并担任型号主任设计师和副总师,曾获得国家技术发明二等奖、国防科技进步一等奖、军队科技进步一等奖等。E-mail: ywd@mail.ie.ac.cn

    张衡:张 衡(1990–),男,山东滕州人,博士,主要从事多基星载SAR信号处理、系统设计、多基线干涉SAR信号处理等。E-mail: zhangheng@aircas.ac.cn

    王伟:王 伟(1985–),男,河北邯郸人,副研究员、硕士生导师。主要从事星载合成孔径雷达系统设计、数字阵列处理,波形编码与优化等。E-mail: wwang@mail.ie.ac.cn

    刘大成(1990–),男,云南大理人,助理研究员。主要从事星载合成孔径雷达系统设计工作、双基SAR同步技术研究。E-mail: dcliu@mail.ie.ac.cn

    王宇:王 宇(1980–),男,河南汝南人,中科院特聘研究员、博士生导师。主要从事星载成像雷达系统与信号处理研究工作,承担了多个国防预研和重大型号工程,并任卫星型号副总设计师/SAR载荷总设计师;曾获得国家技术发明二等奖、军队科技进步一等奖、中国科学院青年科学家奖等;曾入选中国科学院百人计划、国家万人计划-领军人才、国家自然科学基金委杰出青年基金。E-mail: yuwang@mail.ie.ac.cn

    通讯作者:

    张衡 zhangheng@aircas.ac.cn

    王宇 yuwang@mail.ie.ac.cn

  • 中图分类号: TN957.52

Forthcoming Spaceborne SAR Development

Funds: The National Key Research and Development Program of China (2017YFB0502702), The National Natural Science Foundation of China (61825106)
More Information
  • 摘要: 星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。
  • 图  1  不同分辨率SAR图像对比(X波段,分辨率自左至右分别为0.1 m, 0.5 m和2.0 m,场景分别为电塔和农田,中国科学院空天信息创新研究院(下文简称AIR-CAS)航天微波遥感系统部供图)

    Figure  1.  SAR image comparison between different resolution (tower and farm at X band, the resolution are 0.1 m, 0.5 m and 2.0 m. Images are provided by the Department of Space Microwave Remote Sensing System, AIR-CAS)

    图  2  不同分辨率下坦克的图像(图片数据来源美国Sandia国家实验室)

    Figure  2.  Tank at different resolution (Images are from the United States Sandia National Lab.)

    图  3  传统体制SAR向新工作模式的发展

    Figure  3.  SAR development from the traditional mode to the new ones

    图  4  两种方位多波束技术

    Figure  4.  Two types of technologies of multiple azimuth beams

    图  5  高分三号SAR卫星超精细条带模式成像结果(数据由中国科学院空天信息创新研究院航天微波遥感系统部提供)

    Figure  5.  The ultra-fine strip mode imaging results of Gaofen-3 satellite (Images are provided by the Department of Space Microwave Remote Sensing System, AIR-CAS)

    图  6  变PRF模式工作原理

    Figure  6.  The operating principle of PRF variation technology

    图  7  周期性线性变化的脉冲重复间隔(PRI)及其对应的盲区分布[41]

    Figure  7.  Pulse repetition intervals with periodic linear variation and corresponding blind ranges[41]

    图  8  基于星载SAR模拟变PRF模式数据的成像结果

    Figure  8.  Imaging results based on simulated data with PRF variation of spaceborne SAR

    图  9  大斜视聚束SAR成像几何,(a)和(b)分别展示了PRF固定和变化时的数据存储情况

    Figure  9.  The acquisition geometry of highly squint spotlight mode SAR

    图  10  俯仰向DBF扫描接收示意图

    Figure  10.  The sketch of DBF scan on receive in elevation

    图  11  传统DBF-SAR系统处理框架

    Figure  11.  The traditional processing framework of DBF-SAR system

    图  12  改进的DBF-SAR系统处理框架

    Figure  12.  The modified processing framework of DBF-SAR system

    图  13  机载DBF-SAR成像结果(数据由中国科学院空天信息创新研究院航天微波遥感系统部提供)

    Figure  13.  The imaging results of single channel and 16-channels with DBF processing in elevation (Images are provided by the Department of Space Microwave Remote Sensing System, AIR-CAS)

    图  14  MIMO-SAR分类示意图

    Figure  14.  The classification diagram of MIMO-SAR

    图  15  MIMO-SAR构成多相位中心

    Figure  15.  MIMO-SAR forms multiple phase centers

    图  16  多维正交波形概念示意图

    Figure  16.  The diagram of multidimensional orthogonal waveform encoding concept

    图  17  星载SAR发展趋势与典型星载SAR系统/概念示意图

    Figure  17.  Illustration of spaceborne SAR development trend and typical spaceborne SAR systems/concepts

    图  18  时间、相位、波束3同步问题

    Figure  18.  Three synchronization problems: time synchronization, phase synchronization and beam synchronization

    图  19  双/多基SAR相位同步方法

    Figure  19.  The phase synchronization schemes for bistatic/multistatic SAR system

    图  20  TanDEM-X使用的同步天线和同步时序

    Figure  20.  The antenna and timing diagram used for TanDEM-X

    图  21  LT-1双基SAR系统与同步系统中的螺旋天线

    Figure  21.  The LT-1 bistatic SAR system and the applied quadrifilar helix antenna

    图  22  分布式相位中心成像构型[91]

    Figure  22.  The multistatic SAR imaging geometry of distributed phase centers[91]

    图  23  重构处理前后的成像结果对比[91]

    Figure  23.  Comparison of the imaging results with/ without reconstruction[91]

    图  24  一种沿航迹多基SAR系统[79]

    Figure  24.  An along-track multistatic SAR constellation geometry[79]

    图  25  沿航迹分布式多基SAR信号重构[79]

    Figure  25.  Block diagram of the reconstruction algorithm for multistatic SAR constellations with large along track baseline[79]

    图  26  多基距离多波束体制示意图

    Figure  26.  Multistatic synthetic aperture radar with multiple elevation beams

    图  27  强距离模糊估计与消除流程

    Figure  27.  Procedure of the estimation and removal for the strong range ambiguities

    图  28  强距离模糊估计与消除的面目标仿真结果

    Figure  28.  Simulation results for the estimation and removal of the strong range ambiguities with area target

    图  29  图28红框中强点目标放大分析[92]

    Figure  29.  Zoomed-in analysis of the point-like targets in the red rectangles in Fig. 28[92]

    图  30  多星协同成像系统示意图

    Figure  30.  Illustration of a multistatic cooperative SAR imaging system

    图  31  HRWS系统工作示意图[93]

    Figure  31.  Illustration of the HRWS mission[93]

    图  32  SAOCOM-CS双星编队

    Figure  32.  Illustration of the SAOCOM-CS’s mission concept with two satellites in the formation

    图  33  高分三号全极化条带1模式极化合成图像(中国科学院空天信息创新研究院航天微波遥感系统部供图)

    Figure  33.  Polarimetric synthesis image of GF-3 QPSI-1 mode (Images are provided by the Department of Space Microwave Remote Sensing System, AIR-CAS)

    图  34  距离模糊抑制效果仿真

    Figure  34.  Distributed scene simulation for range ambiguity suppression demonstration

    图  35  机载P波段混合极化SAR(圆极化发射/双线极化接收)极化分解图像:红色表示偶次散射,蓝色表示表面散射,绿色表示体散射(AIR-CAS供图)

    Figure  35.  Polarimetric decomposition image of airborne P-band hybrid polarimetric SAR (circularly polarized on transmit and dual-circularly polarized on receive) Red for double-bounce scattering, blue for single-bounce scattering and green for volume scattering (Image provided by AIR-CAS)

    图  36  基于深度学习的全极化SAR分类(蓝色:水体,红色:建筑,绿色:植被)

    Figure  36.  Classification result of quad-polarimetric SAR image based on deep learning(blue for water; red for buildings and green for vegetation)

    图  37  德国Garzweiler煤矿DEM[102]

    Figure  37.  Evolution of the Garzweiler mine in Germany[102]

    图  38  机载双频干涉

    Figure  38.  Airborne dual-frequency InSAR result

    图  39  不同波段下的高程模型特征[106]

    Figure  39.  Different elevation mode at different frequency[106]

    图  40  利用SAR数据对黄河三角洲区域进行长时间序列形变监测

    Figure  40.  Vertical deformation rates over the Yellow River Delta during the period of 2007–2010 obtained from ASAR (a), 2015–2018 obtained from S-1A (b) and 2016–2018 obtained from S-1B (c) datasets

    图  41  利用高分三号数据获取的北京地区地面沉降速率图;右侧曲线给出A, B, C 3点沉降量

    Figure  41.  Linear deformation rates maps over Beijing using GF-3 SAR images. The curves show the deformation of area A, B and C

    图  42  利用高分三号SAR数据对金沙江白格滑坡滑前形变进行监测

    Figure  42.  Deformation inversion of Baige landslide on Jinsha River before collapse using GF-3 SAR images

    图  43  极化干涉多元素分解算法分解结果

    Figure  43.  Multi-element decomposition result of PolInSAR image

    图  44  极化干涉七元素分解算法分解结果(数据来源:DLR机载L波段极化干涉SAR试验)

    Figure  44.  Seven-element decomposition result of PolInSAR image (data provided by DLR airborne L-band PolInSAR)

    图  45  极化干涉分类结果(数据来源:DLR机载L波段极化干涉SAR试验)

    Figure  45.  Classification result of PolInSAR image (data provided by DLR airborne L-band PolInSAR)

    图  46  星载TomoSAR示意图

    Figure  46.  The geometry of TomoSAR imaging

    图  47  小数据集三维重建结果对比

    Figure  47.  The comparison of 3D reconstruction results using small data stacks

    图  48  检测到的PS点的高度[125]

    Figure  48.  The elevations of detected PS[125]

    图  49  SRTM洋流测速结果图[126]

    Figure  49.  Retrieval of surface velocity fields from SRTM data[126]

    图  50  高分三号洋流测速结果图

    Figure  50.  Retrieval of surface velocity fields from Gaofen-3 data

    图  51  高分三号SAR动目标检测结果展示

    Figure  51.  Demonstration of the moving target detection using Gaofen-3 data

    图  52  国外SAR小卫星

    Figure  52.  Small SAR satellite

    图  53  不同体制收发时序对比图

    Figure  53.  The comparison of timing diagram between different systems

    图  54  微型SAR系统组成框图(平板天线体制)

    Figure  54.  Block diagram of micro-SAR system (planar antenna system)

    图  55  德国SAR-Lupe组网示意图

    Figure  55.  Illustration of SAR-Lupe constellation

    图  56  美国Lacrosse长曲棍球组网示意图

    Figure  56.  Illustration of Lacrosse constellation

    表  1  SAR图像分辨率与典型军事目标关系(m)

    Table  1.   The relationship between the resolution and typical military targets (m)

    目标 发现 识别 确认 描述
    雷达 3 0.9 0.3 0.15
    无线通讯设施 3 1.5 0.3 0.15
    部队单位或营地 3 3 1.2 0.3
    机场设施 6 4.5 3 0.3
    火炮兵器/火箭 0.9 0.6 0.15 0.05
    飞机 4.5 1.5 0.9 0.15
    司令部 3 1.5 0.9 0.15
    导弹阵地 3 1.5 0.6 0.3
    中小型船只 7.5 4.5 0.6 0.3
    车辆 1.5 0.6 0.3 0.05
    下载: 导出CSV

    表  2  DEM指标划分标准(m)

    Table  2.   Index classification criteria of DEM(m)

    空间分辨率 绝对高程精度 相对高程精度
    HRTI-1 90 ×90 < 30 < 20
    HRTI-2 30 ×30 < 18 < 12
    HRTI-3 12 ×12 < 10 < 2
    HRTI-4 6 ×6 < 5 < 0.8
    HRE-4 4 ×4 < 5 < 0.8
    下载: 导出CSV

    表  3  不同体制的优缺点对比

    Table  3.   Advantages and disadvantages comparison between different systems

    信号体制 优点 缺点
    传统脉冲体制 收发天线共用 占空比低,发射功率大
    连续波体制 占空比~100%,峰值功率低 收发天线无法共用
    间断连续波体制 占空比90~100%,结合脉冲与连续波的优势 回波信号部分缺失,需要估计重构
    下载: 导出CSV
  • [1] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1–10. doi:  10.3724/SP.J.1300.2012.20015

    DENG Yunkai, ZHAO Fengjun, and WANG Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1–10. doi:  10.3724/SP.J.1300.2012.20015
    [2] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi:  10.1109/MGRS.2013.2248301
    [3] 魏钟铨. 合成孔径雷达卫星[M]. 北京: 科学出版社, 2001.

    WEI Zhongquan. Synthetic Aperture Radar Satellite[M]. Beijing: Science Press, 2001.
    [4] REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi:  10.1109/JPROC.2012.2220511
    [5] KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi:  10.1109/LGRS.2004.832700
    [6] 范剑超, 王德毅, 赵建华, 等. 高分三号SAR影像在国家海域使用动态监测中的应用[J]. 雷达学报, 2017, 6(5): 456–472. doi:  10.12000/JR17080

    FAN Jianchao, WANG Deyi, ZHAO Jianhua, et al. National sea area use dynamic monitoring based on GF-3 SAR imagery[J]. Journal of Radars, 2017, 6(5): 456–472. doi:  10.12000/JR17080
    [7] KRIEGER G and MOREIRA A. Spaceborne Bi- and multistatic SAR: Potential and challenges[J]. IEE Proceedings - Radar,Sonar and Navigation, 2006, 153(3): 184–198. doi:  10.1049/ip-rsn:20045111
    [8] KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317–3341. doi:  10.1109/TGRS.2007.900693
    [9] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [10] CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston, MA: Artech House, 1995.
    [11] 王伟. 新体制星载SAR成像模型与二维多通道技术研究[D]. [博士论文], 中国科学院大学, 2016.

    WANG Wei. Study on new imaging model and two-dimensional multi-channel techniques for spaceborne synthetic aperture radar[D]. [Ph.D. dissertation], UCAS, 2016.
    [12] WANG Xiangyu, WANG R, DENG Yunkai, et al. Precise calibration of channel imbalance for very high resolution SAR with stepped frequency[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4252–4261. doi:  10.1109/TGRS.2017.2688728
    [13] GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi:  10.1109/TAES.2009.5089542
    [14] YOUNIS M, ROMMEL T, BORDONI F, et al. On the pulse extension loss in digital beamforming SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1436–1440. doi:  10.1109/LGRS.2015.2406815
    [15] WANG Wei, WANG R, DENG Yunkai, et al. An improved processing scheme of digital beam-forming in elevation for reducing resource occupation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 309–313.
    [16] WANG Hui, ZHANG Hui, DAI Shoulun, et al. Azimuth multichannel GMTI based on Ka-band DBF-SCORE SAR system[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 419–423. doi:  10.1109/LGRS.2018.2791622
    [17] ZHAO Qingchao, ZHANG Yi, WANG Wei, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020. doi:  10.1109/TGRS.2019.2958863
    [18] RINCON R F, VEGA M A, BUENFIL M, et al. NASA’s L-band digital beamforming synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3622–3628. doi:  10.1109/TGRS.2011.2157971
    [19] BERGER M, MORENO J, JOHANNESSEN J A, et al. ESA’s sentinel missions in support of Earth system science[J]. Remote Sensing of Environment, 2012, 120: 84–90. doi:  10.1016/j.rse.2011.07.023
    [20] LUO Xiulian, DENG Yunkai, WANG R, et al. Image formation processing for sliding spotlight SAR with stepped frequency chirps[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1692–1696. doi:  10.1109/LGRS.2014.2306206
    [21] 罗秀莲. 新体制星载聚束/滑动聚束SAR信号处理研究[D]. [博士论文], 中国科学院大学, 2015.

    LUO Xiulian. Study on signal processing of novel spaceborne spotlight/sliding spotlight SAR data[D]. [Ph.D. dissertation], UCAS, 2015.
    [22] RANEY R K and PRINCZ G J. Reconsideration of azimuth ambiguities in SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987.
    [23] YOUNIS M. General formulation of NESZ[R]. Technical Note TN-SAR-Tech-001, 2008.
    [24] CURRIE A and BROWN M A. Wide-swath SAR[J]. IEE Proceedings F - Radar and Signal Processing, 1992, 139(2): 122–135. doi:  10.1049/ip-f-2.1992.0016
    [25] ZHAO Shuo, WANG R, DENG Yunkai, et al. Modifications on multichannel reconstruction algorithm for SAR processing based on periodic nonuniform sampling theory and nonuniform fast fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 4998–5006. doi:  10.1109/JSTARS.2015.2421303
    [26] CERUTTI-MAORI D, SIKANETA I, KLARE J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5034–5055. doi:  10.1109/TGRS.2013.2286520
    [27] LIU Baochang and HE Yijun. Improved DBF algorithm for multichannel high-resolution wide-swath SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1209–1225. doi:  10.1109/TGRS.2015.2476496
    [28] WANG Wei, WANG R, DENG Yunkai, et al. Azimuth ambiguity suppression with an improved reconstruction method based on antenna pattern for multichannel synthetic aperture radar systems[J]. IET Radar,Sonar&Navigation, 2015, 9(5): 492–500.
    [29] LIU Na, WANG R, DENG Yunkai, et al. Modified multichannel reconstruction method of SAR with highly nonuniform spatial sampling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2): 617–627. doi:  10.1109/JSTARS.2016.2630048
    [30] ZHANG Yongwei, WANG Wei, DENG Yunkai, et al. Signal reconstruction algorithm for azimuth multichannel SAR system based on a multiobjective optimization model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020. doi:  10.1109/TGRS.2019.2959217
    [31] CHENG Pu, WAN Jianwei, XIN Qin, et al. An improved azimuth reconstruction method for multichannel SAR using Vandermonde matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 67–71. doi:  10.1109/LGRS.2016.2626309
    [32] CHEN Renyuan, JIANG Kai, YONG Yanmei, et al. High resolution dual channel receiving SAR compensation technique[C]. 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 713–717.
    [33] GIERULL C H. Digital channel balancing of along-track interferometric SAR data[R]. Technical Memorandum TM 2003-024, 2003.
    [34] LIU Aifei, LIAO Guisheng, MA Lun, et al. An array error estimation method for constellation SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 731–735. doi:  10.1109/LGRS.2010.2046878
    [35] YANG Taoli, LI Zhenfang, LIU Yanyang, et al. Channel error estimation methods for multichannel SAR systems in azimuth[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 548–552. doi:  10.1109/LGRS.2012.2212873
    [36] LIU Yanyang, LI Zhenfang, YANG Taoli, et al. An adaptively weighted least square estimation method of channel mismatches in phase for multichannel SAR systems in azimuth[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 439–443. doi:  10.1109/LGRS.2013.2264771
    [37] 郜参观. 高分辨率宽测绘带合成孔径雷达的新体制研究[D]. [博士论文], 中国科学院大学, 2012.

    GAO Canguan. Study on the new concept of high-resolution and wide-swath synthetic aperture radar[D]. [Ph.D. dissertation], UCAS, 2012.
    [38] FENG Jin, GAO Canguan, ZHANG Yi, et al. Phase mismatch calibration of the multichannel SAR based on azimuth cross correlation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 903–907. doi:  10.1109/LGRS.2012.2227107
    [39] 陈倩, 邓云凯, 刘亚东, 等. 基于自适应滤波的DPC-MAB SAR方位向信号重建[J]. 电子与信息学报, 2012, 34(6): 1331–1336. doi:  10.3724/SP.J.1146.2011.01074

    CHEN Qian, DENG Yunkai, LIU Yadong, et al. SAR azimuth signal reconstruction based on adaptive filtering for the DPC-MAB SAR system[J]. Journal of Electronics&Information Technology, 2012, 34(6): 1331–1336. doi:  10.3724/SP.J.1146.2011.01074
    [40] ZHANG Lei, DENG Yunkai, WANG Yu, et al. Channel error compensation for multi-channel SAR based on cost function[J]. Journal of Radars, 2014, 3(5): 556–564. doi:  10.3724/SP.J.1300.2014.14052
    [41] MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth’s surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8–23. doi:  10.1109/MGRS.2015.2437353
    [42] GEBERT N and KRIEGER G. Ultra-wide swath SAR imaging with continuous PRF variation[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010.
    [43] VILLANO M, KRIEGER G, and MOREIRA A. Staggered-SAR for high-resolution wide-swath imaging[C]. IET International Conference on Radar Systems, Glasgow, UK, 2012: 1–6.
    [44] LUO Xiulian, WANG R, XU Wei, et al. Modification of multichannel reconstruction algorithm on the SAR with linear variation of PRI[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 3050–3059. doi:  10.1109/JSTARS.2014.2298242
    [45] VILLANO M, KRIEGER G, and MOREIRA A. Staggered SAR: High-resolution wide-swath imaging by continuous PRI variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4462–4479. doi:  10.1109/TGRS.2013.2282192
    [46] VILLANO M, KRIEGER G, and MOREIRA A. Onboard processing for data volume reduction in high-resolution wide-swath SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1173–1177. doi:  10.1109/LGRS.2016.2574886
    [47] WANG Xiangyu, WANG R, DENG Yunkai, et al. SAR signal recovery and reconstruction in staggered mode with low oversampling factors[J].IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 704–708. doi:  10.1109/LGRS.2018.2805311
    [48] PINHEIRO M, PRATS-IRAOLA P, RODRIGUEZ-CASSOLA M, et al. Combining spectral estimation and blu interpolation for the reconstruction of low-oversampled staggered SAR data[C]. 2018 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018.
    [49] ZENG Hongcheng, CHEN Jie, LIU Wei, et al. Modified omega-k algorithm for high-speed platform highly-squint staggered SAR based on azimuth non-uniform interpolation[J]. Sensors, 2015, 15(2): 3750–3765. doi:  10.3390/s150203750
    [50] 罗绣莲, 徐伟, 郭磊. 捷变PRF技术在斜视聚束SAR中的应用[J]. 雷达学报, 2015, 4(1): 70–77. doi:  10.12000/JR14149

    LUO Xiulian, XU Wei, and GUO Lei. The application of PRF variation to squint spotlight SAR[J]. Journal of Radars, 2015, 4(1): 70–77. doi:  10.12000/JR14149
    [51] MEN Zhirong, WANG Pengbo, LI Chunsheng, et al. High-temporal-resolution high-spatial-resolution spaceborne SAR based on continuously varying PRF[J]. Sensors, 2017, 17(8): 1700. doi:  10.3390/s17081700
    [52] 王沛, 徐伟, 李宁, 等. 星载大斜视聚束SAR变PRI成像技术研究[J]. 电子与信息学报, 2018, 40(10): 2470–2477. doi:  10.11999/JEIT180049

    WANG Pei, XU Wei, LI Ning, et al. Investigation on PRI variation for high squint spaceborn spotlight SAR[J]. Journal of Electronics&Information Technology, 2018, 40(10): 2470–2477. doi:  10.11999/JEIT180049
    [53] YOUNIS M, FISCHER C, and WIESBECK W. Digital beamforming in SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1735–1739. doi:  10.1109/TGRS.2003.815662
    [54] HUBER S, YOUNIS M, PATYUCHENKO A, et al. Digital beam forming techniques for spaceborne reflector SAR systems[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010.
    [55] YOUNIS M. Digital beam-forming for high resolution wide swath real and synthetic aperture radar[D]. Universität Karlsruhe, 2004.
    [56] SCHAEFER C, HEER C, LUDWIG M. X-band demonstrator for receive-only frontend with digital beamforming[C]. 2010 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010.
    [57] SADOWY G, GHAEMI H, HEAVEY B, et al. Ka-band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography[C]. 2010 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010.
    [58] KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi:  10.1109/TGRS.2013.2263934
    [59] LI Jian and STOICA P. MIMO Radar Signal Processing[M]. New Jersey: Wiley-IEEE Press, 2009: 787–788.
    [60] ROMMEL T, RINCON R, YOUNIS M, et al. Implementation of a MIMO SAR imaging mode for NASA’s next generation airborne L-band SAR[C]. EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–5.
    [61] MARTIN M, KLUPAR P, KILBERG S, et al. TECHSAT 21 and revolutionizing space missions using microsatellites[C]. The 15th AIAA/USU Conference on Small Satellites, Reston, USA, 2001.
    [62] CLOUDE S R and PAPATHANASSIOU K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551–1565. doi:  10.1109/36.718859
    [63] KLARE J, WEISS M, PETERS O, et al. ARTINO: A new high resolution 3D imaging radar system on an autonomous airborne platform[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 3842–3845.
    [64] 周高杯, 宋红军, 邓云凯. MIMO-SAR中虚拟孔径相位校正与子带合成方法研究[J]. 电子与信息学报, 2011, 33(2): 484–488. doi:  10.3724/SP.J.1146.2010.00435

    ZHOU Gaobei, SONG Hongjun, and DENG Yunkai. Investigation of virtual aperture phase correction and sub band synthesis algorithms in MIMO-SAR[J]. Journal of Electronics&Information Technology, 2011, 33(2): 484–488. doi:  10.3724/SP.J.1146.2010.00435
    [65] ENDER J H G and BRENNER A R. PAMIR—a wideband phased array SAR/MTI system[J]. IEE Proceedings-Radar,Sonar and Navigation, 2003, 150(3): 165–172. doi:  10.1049/ip-rsn:20030445
    [66] KRIEGER G, GEBERT N, MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. doi:  10.1109/TGRS.2007.905974
    [67] WANG Wei, WANG R, ZHANG Zhimin, et al. First demonstration of airborne SAR with nonlinear FM chirp waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 247–251. doi:  10.1109/LGRS.2015.2508102
    [68] JIN Guodong, LIU Kaiyu, DENG Yunkai, et al. Nonlinear frequency modulation signal generator in LT-1[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1570–1574. doi:  10.1109/LGRS.2019.2905359
    [69] JIN Guodong, DENG Yunkai, WANG R, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155–6168. doi:  10.1109/TGRS.2019.2904627
    [70] ENDER J H G. Signal theoretical aspects of bistatic SAR[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1438–1441.
    [71] ENDER J H G, WALTERSCHEID I, and BRENNER A R. New aspects of bistatic SAR: Processing and experiments[C]. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 1758–1762.
    [72] PRATS-IRAOLA P, RODRIGUEZ-CASSOLA M, and MOREIRA A. Investigations on bistatic SAR image formation for the SAOCOM-CS mission[C]. EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016.
    [73] KRIEGER G, ZONNO M, MITTERMAYER J, et al. MirrorSAR: A fractionated space transponder concept for the implementation of low-cost multistatic SAR missions[C]. EUSAR 2018: 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018.
    [74] KRIGER G, ZINK M, BACHMANN, et al. TanDEM-X:A radar interferometer with two formation-flying satellites[J]. Acta Astronautica, 2013, 89: 83–98.
    [75] HUBER S, DE ALMEIDA F Q, VILLANO M, et al. Tandem-L: A technical perspective on future spaceborne SAR sensors for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4792–4807. doi:  10.1109/TGRS.2018.2837673
    [76] EINEDER M. Ocillator clock drift compensation in bistatic interferometric SAR[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1449–1451.
    [77] ROTT H, LÓPEZ-DEKKER P, SOLBERG S, et al. SESAME: A single-pass interferometric Sentinel-1 companion SAR mission for monitoring GEO- and biosphere dynamics[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 107–110.
    [78] D’ERRICO M. Distributed Space Missions for Earth System Monitoring[M]. Springer New York, 2013.
    [79] SAKAR N, RODRIGUEZ-CASSOLA M, PRATS-IRAOLA P, et al. Azimuth reconstruction algorithm for multistatic SAR formations with large along-track baselines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019. doi:  10.1109/TGRS.2019.2950963
    [80] WANG R and DENG Yunkai. Bistatic SAR System and Signal Processing Technology[M]. Singapore: Springer Press, 2018.
    [81] ZHANG Heng, DENG Yunkai, WANG R, et al. Spaceborne/stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5203–5216. doi:  10.1109/TGRS.2016.2558294
    [82] YOUNIS M, METZIG R, and KRIEGER G. Performance prediction of a phase synchronization link for bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 429–433. doi:  10.1109/LGRS.2006.874163
    [83] HE Zhihua, HE Feng, CHEN Junli, et al. Echo-domain phase synchronization algorithm for bistatic SAR in alternating bistatic/ping–pong mode[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 604–608. doi:  10.1109/LGRS.2011.2176714
    [84] ZHANG Mingmin, WANG R, DENG Yunkai, et al. A synchronization algorithm for spaceborne/stationary BiSAR imaging based on contrast optimization with direct signal from radar satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1977–1989. doi:  10.1109/TGRS.2015.2493078
    [85] PINHEIRO M, RODRIGUEZ-CASSOLA M, PRATS-IRAOLA P, et al. Reconstruction of coherent pairs of synthetic aperture radar data acquired in interrupted mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1876–1893. doi:  10.1109/TGRS.2014.2350255
    [86] Liang Da, Liu Kaiyu, Yue Haixia, et al. An advanced non-interrupted synchronization scheme for bistatic synthetic aperture radar[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1116–1119.
    [87] LIANG Da, LIU Kaiyu, ZHANG Heng, et al. A High-accuracy synchronization phase-compensation method based on Kalman filter for bistatic synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2019. doi:  10.1109/LGRS.2019.2952475
    [88] ZHANG Yanyan, ZHANG Heng, OU Naiming, et al. First demonstration of multipath effects on phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019. doi:  10.1109/TGRS.2019.2952471
    [89] JIN Guodong, LIU Kaiyu, LIU Dacheng, et al. An advanced phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019. doi:  10.1109/TGRS.2019.2948219
    [90] KRAUS T, KRIEGER G, BACHMANN M, et al. Spaceborne demonstration of distributed SAR imaging with TerraSAR-X and TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1731–1735. doi:  10.1109/LGRS.2019.2907371
    [91] KRAUS T, BRAEUTIGAM B, BACHMANN M, et al. Multistatic SAR imaging: First results of a four phase center experiment with TerraSAR-X and TanDEM-X[C]. EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–5.
    [92] ZHAO Qingchao, ZHANG Yi, WANG R, et al. Estimation and removal of strong range ambiguities in multistatic synthetic aperture radar with multiple elevation beams[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3): 407–411. doi:  10.1109/LGRS.2018.2875434
    [93] JOCHUM M. HRWS: X-Band-SAR[R]. Airbus Report, 2018.
    [94] SCIPAL K and DAVIDSON M. The SAOCOM-CS mission: ESA’s first bistatic and tomographic L-band mission[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 123–124.
    [95] DHINGRA S and BHATTACHARYA A. A modified m-χ decomposition for compact polarimetric SAR data[C]. Lunar and Planetary Science Conference, The Woodlands, USA, 2015.
    [96] ATTEIA G E and COLLINS M J. On the use of compact polarimetry SAR for ship detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 1–9. doi:  10.1016/j.isprsjprs.2013.01.009
    [97] CHARBONNEAU F J, BRISCO B, RANEY R K, et al. Compact polarimetry overview and applications assessment[J]. Canadian Journal of Remote Sensing, 2010, 36(S2): S298–S315.
    [98] JIN Guodong, DENG Yunkai, WANG R, et al. Mitigating range ambiguities with advanced nonlinear frequency modulation waveform[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1230–1234. doi:  10.1109/LGRS.2019.2895111
    [99] YANG Rong, HU Zhentao, LIU Yiming, et al. A novel polarimetric SAR classification method integrating pixel-based and patch-based classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019. doi:  10.1109/LGRS.2019.2923403
    [100] HAJNSEK I, BUSCHE T, MOREIRA A, et al. Mission status and data availability: Tandem-X[C]. The 4th International Polinsar 2009 Workshop, Wessling, Germany, 2009.
    [101] ZINK M, BACHMANN M, BRAUTIGAM B, et al. TanDEM-X: The new global DEM takes shape[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(2): 8–23. doi:  10.1109/MGRS.2014.2318895
    [102] RIZZOLI P, MARTONE M, GONZALEZ C, et al. Generation and performance assessment of the global TanDEM-X digital elevation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132: 119–139. doi:  10.1016/j.isprsjprs.2017.08.008
    [103] ZHU Xiaoxiang, BAIER G, LACHAISE M, et al. Potential and limits of non-local means InSAR filtering for TanDEM-X high-resolution DEM generation[J]. Remote Sensing of Environment, 2018, 218: 148–161. doi:  10.1016/j.rse.2018.09.012
    [104] LACHAISE M, FRITZ T, and BREIT H. InSAR processing and dual-baseline phase unwrapping for global TanDEM-X DEM generation[C]. 2014 Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 2229–2232.
    [105] DING Zegang, WANG Zhen, LIN Sheng, et al. Local fringe frequency estimation based on multifrequency InSAR for phase-noise reduction in highly sloped terrain[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1527–1531. doi:  10.1109/LGRS.2017.2720695
    [106] TANDEM-L: A satellite mission for monitoring dynamic processes on the earth’s surface[R]. DLR Report, 2014.
    [107] CRIPPEN R E and BLOM R G. Concept for the subresolution measurement of earthquake strain fields using SPOT panchromatic imagery[C]. Earth and Atmospheric Remote Sensing, Orlando, USA, 1991. doi: 10.1117/12.45870.
    [108] OSMANOĞLU B, SUNAR F, WDOWINSKI S, et al. Time series analysis of InSAR data: Methods and trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 90–102. doi:  10.1016/j.isprsjprs.2015.10.003
    [109] FERRETTI A, PRATI C, and ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20. doi:  10.1109/36.898661
    [110] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375–2383. doi:  10.1109/TGRS.2002.803792
    [111] ZHANG Bowen, WANG R, DENG Yunkai, et al. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148: 157–173. doi:  10.1016/j.isprsjprs.2018.12.008
    [112] WANG Jili, YU Weidong, DENG Yunkai, et al. Demonstration of time-series INSAR processing in Beijing using a small stack of gaofen-3 differential Interferograms[J]. Journal of Sensors, 2019, 2019: 4204580.
    [113] MICHEL R, AVOUAC J P, and TABOURY J. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7): 875–878. doi:  10.1029/1999GL900138
    [114] WANG Changcheng, MAO Xiaokang, and WANG Qijie. Landslide displacement monitoring by a fully polarimetric SAR offset tracking method[J]. Remote Sensing, 2016, 8(8): 624. doi:  10.3390/rs8080624
    [115] HU Xie, WANG Teng, and LIAO Mingsheng. Measuring coseismic displacements with point-like targets offset tracking[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 283–287. doi:  10.1109/LGRS.2013.2256104
    [116] SINGLETON A, LI Z, HOEY T, et al. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain[J]. Remote Sensing of Environment, 2014, 147: 133–144. doi:  10.1016/j.rse.2014.03.003
    [117] LOPEZ-SANCHEZ J M, BALLESTER-BERMAN J D, and MARQUEZ-MORENO Y. Model limitations and parameter-estimation methods for agricultural applications of polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3481–3493. doi:  10.1109/TGRS.2007.900690
    [118] NEUMANN M, FERRO-FAMIL L, and REIGBER A. Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1086–1104. doi:  10.1109/TGRS.2009.2031101
    [119] WANG Yu, YU Weidong, LIU Xiuqing, et al. A hierarchical extended multiple-component scattering decomposition of polarimetric sar interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2019. doi:  10.1109/LGRS.2019.2942090
    [120] CARREIRAS J M B, QUEGAN S, LE TOAN T, et al. Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions[J]. Remote Sensing of Environment, 2017, 196: 154–162. doi:  10.1016/j.rse.2017.05.003
    [121] KNAELL K. Three-dimensional SAR from practical apertures[C]. SPIE Radar/Ladar Processing and Applications, San Diego, USA, 1995: 31–41.
    [122] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(9): 2142–2152.
    [123] TEBALDINI S. Single and multipolarimetric SAR tomography of forested areas: A parametric approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2375–2387. doi:  10.1109/TGRS.2009.2037748
    [124] LU Hongliang, DENG Yunkai, ZHANG Heng, et al. SAR tomographic imaging demonstration using GF-3 data[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3645–3648.
    [125] LUO Hui, LI Zhenhong, DONG Zhen, et al. A new baseline linear combination algorithm for generating urban digital elevation models with multitemporal InSAR observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1120–1133. doi:  10.1109/TGRS.2019.2943919
    [126] ROMEISER R and THOMPSON D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446–458. doi:  10.1109/36.823940
    [127] CERUTTI-MAORI D, BÜRGER W, ENDER J H G, et al. Wide area surveillance of moving targets with the SAR/GMTI system PAMIR[C]. EUSAR 2006 - 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
    [128] ENDER J H G. Space-time processing for multichannel synthetic aperture radar[J]. Electronics&Communication Engineering Journal, 1999, 11(1): 29–38.
    [129] ENDER J H G, GIERULL C H, and CERUTTI-MAORI D. Improved space-based moving target indication via alternate transmission and receiver switching[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12): 3960–3974. doi:  10.1109/TGRS.2008.2002266
    [130] SUCHANDT S, RUNGE H, BREIT H, et al. Automatic extraction of traffic flows using TerraSAR-X along-track interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 807–819. doi:  10.1109/TGRS.2009.2037919
    [131] CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi:  10.1109/TGRS.2012.2201260
    [132] LIU Yue, DENG Yunkai, WANG R. Focus squint FMCW SAR data using inverse chirp-Z transform based on an analytical point target reference spectrum[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 866–870. doi:  10.1109/LGRS.2012.2184833
    [133] SAR-Lupe[EB/OL]. https://www.ohb-system.de/sar-lupe-english.html.
  • 加载中
图(56) / 表(3)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-23
  • 修回日期:  2020-02-22
  • 网络出版日期:  2020-02-28
  • 刊出日期:  2020-03-07

目录

    /

    返回文章
    返回