留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of Vacuum Ultraviolet Photoionization of Methylcyclohexane in Energy Region of 9$ - $15.5 eV

Hang Zhang Li Yan-bo Zhu Long Chen Jun Yu Ye-peng Li Zhao-hui Lin Xuan Shan Xiao-bin Liu Fu-yi Sheng Liu-si

张航, 李淹博, 朱龙, 陈军, 余业鹏, 李照辉, 林烜, 单晓斌, 刘付轶, 盛六四. 甲基环己烷在9$ \sim $15.5 eV能量区的真空紫外光电离研究[J]. 仁和测试, 2020, 33(3): 296-302. doi: 10.1063/1674-0068/cjcp1905095
引用本文: 张航, 李淹博, 朱龙, 陈军, 余业鹏, 李照辉, 林烜, 单晓斌, 刘付轶, 盛六四. 甲基环己烷在9$ \sim $15.5 eV能量区的真空紫外光电离研究[J]. 仁和测试, 2020, 33(3): 296-302. doi: 10.1063/1674-0068/cjcp1905095
Hang Zhang, Li Yan-bo, Zhu Long, Chen Jun, Yu Ye-peng, Li Zhao-hui, Lin Xuan, Shan Xiao-bin, Liu Fu-yi, Sheng Liu-si. Investigation of Vacuum Ultraviolet Photoionization of Methylcyclohexane in Energy Region of 9$ - $15.5 eV[J]. Rhhz Test, 2020, 33(3): 296-302. doi: 10.1063/1674-0068/cjcp1905095
Citation: Hang Zhang, Li Yan-bo, Zhu Long, Chen Jun, Yu Ye-peng, Li Zhao-hui, Lin Xuan, Shan Xiao-bin, Liu Fu-yi, Sheng Liu-si. Investigation of Vacuum Ultraviolet Photoionization of Methylcyclohexane in Energy Region of 9$ - $15.5 eV[J]. Rhhz Test, 2020, 33(3): 296-302. doi: 10.1063/1674-0068/cjcp1905095

甲基环己烷在9$ \sim $15.5 eV能量区的真空紫外光电离研究

doi: 10.1063/1674-0068/cjcp1905095

Investigation of Vacuum Ultraviolet Photoionization of Methylcyclohexane in Energy Region of 9$ - $15.5 eV

More Information
  • 摘要: 利用具有同步辐射源的反射式飞行时间质谱仪, 研究甲基环己烷的真空紫外光电离和光解离.观测到母体离子C$ _7 $H$ _{14} $$ ^+ $和碎片离子C$ _7 $H$ _{13} $$ ^+ $, C$ _6 $H$ _{11} $$ ^+ $, C$ _6 $H$ _{10} $$ ^+ $, C$ _5 $H$ _{10} $$ ^+ $, C$ _5 $H$ _{9} $$ ^+ $, C$ _4 $H$ _{8}^+ $, C$ _4 $H$ _{7} $$ ^+ $和C$ _3 $H$ _{5} $$ ^+ $的光电离效率曲线.测定甲基环己烷的电离能为9.80$ \pm $ 0.03 eV, 通过光电离效率曲线确定其碎片离子的出现势.在B3LYP/6-31G(d)水平上对过渡态、中间体和产物离子的优化结构进行表征, 并使用G3B3方法计算其能量.提出主要碎片离子的形成通道.分子内氢迁移和碳开环是甲基环己烷裂解途径中最重要的过程.
  • Figure  1.  Photoionization mass spectra of MCH at different energies of 10.0, 12.5, and 15.5 eV, respectively

    Figure  2.  Normalized PIE curves of the parent ion and major fragment ions in the dissociative photoionization of MCH.

    Figure  3.  Geometric constructions of (a) the neutral MCH and (b) the ionized parent molecule.

    Figure  4.  Formation pathways of C7H13+ and C6H11+ calculated at the B3LYP/6-31G(d) level.

    Figure  5.  Formation pathway of C6H10+ calculated at the B3LYP/6-31G(d) level.

    Figure  6.  Formation pathway of C5H10+ calculated at the B3LYP/6-31G(d) level.

    Figure  7.  Formation pathway of C5H9+ calculated at the B3LYP/6-31G(d) level.

    Table  Ⅰ.   Theoretical and experimental values of ionization energy and appearance energies for main fragment ions from the dissociative photoionization of MCH.

    下载: 导出CSV
  • [1] S. Dooley, J. Heyne, S. H. Won, P. Dievart, Y. G. Ju, and F. L. Dryer, Energy Fuels 28, 7649 (2014). doi:  10.1021/ef5008962
    [2] N. Hansen, T. Kasper, S. J. Klippenstein, P. R. Westmoreland, M. E. Law, C. A. Taatjes, K. Kohse-Höinghaus, J. Wang, and T. A. Cool, J. Phys. Chem. A 111, 4081 (2007). doi:  10.1021/jp0683317
    [3] E. J. Silke, W. J. Pitz, C. K. Westbrook, and M. Ribaucour, J. Phys. Chem. A 111, 3761 (2007). doi:  10.1021/jp067592d
    [4] A. Agosta, M. S. Dissertation, Philadelphia: Drexel University, (2002).
    [5] J. T. Farrell, N. P. Cernansky, F. L. Dryer, C. A. Hergart, C. K. Law, R. M. McDavid, C. J. Mueller, A. K. Patel, and H. Pitsch, SAE Technical Papers 1, 201 (2007).
    [6] W. J. Pitz, C. V. Naik, T. Ní Mhaoldúin, C. K. Westbrook, H. J. Curran, J. P. Orme, and J. M. Simmie, Proc. Combust. Inst. 31, 267 (2007). doi:  10.1016/j.proci.2006.08.041
    [7] F. Buda, B. Heyberger, R. Fournet, P. A. Glaude, V. Warth, and F. Battin-Leclerc, Energy Fuels 20, 1450 (2006).
    [8] Z. D. Wang, L. L. Ye, W. H. Yuan, L. D. Zhang, Y. Z. Wang, Z. J. Cheng, F. Zhang, and F. Qi, Combust. Flame 161, 84 (2014). doi:  10.1016/j.combustflame.2013.08.011
    [9] A. T. Holley, Y. Dong, M. G. Andac, and F. N. Egolfopoulos, Proc. Comb. Inst. 144, 448 (2006). https://www.sciencedirect.com/science/article/abs/pii/S0010218005002142
    [10] T. Bieleveld, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi, U. Niemann, and K. Seshadri, Proc. Combust. Inst. 32, 493 (2009). doi:  10.1016/j.proci.2008.06.214
    [11] C. V. Naik, W. J. Pitz, M. Sjöberg, J. E. Dec, J. Orme, H. J. Curran, J. M. Simmie, and C. K. Westbrook, SAE. Trans. 114, 1381 (2005). https://www.sciencedirect.com/science/article/abs/pii/S0010218016301146
    [12] J. P. Orme, H. J. Curran, and J. M. Simmie, J. Phys. Chem. A 110, 114 (2006). doi:  10.1021/jp0543678
    [13] J. M. Simmie, Prog. Energy Combust. Sci. 29, 599 (2003). https://www.sciencedirect.com/science/article/pii/S0360128503000601
    [14] S. Zeppieri, K. Brezinsky, and I. Glassman, Combust. Flame 108, 266 (1997). doi:  10.1016/S0010-2180(96)00125-3
    [15] M. K. Liszka and K. Brezinsky, Fuel 237, 245 (2019). doi:  10.1016/j.fuel.2018.09.095
    [16] T. Bissoonauth, Z. D. Wang, S. Y. Mohamed, J. Y. Wang, B. J. Chen, A. Rodriguez, O. Frottier, X. Y. Zhang, Y. Zhang, C. C. Cao, J. Z. Yang, O. Herbinet, F. Battin-Leclerc, and S. M. Sarathy, Proc. Combust. Inst. 37, 409 (2019). doi:  10.1016/j.proci.2018.05.086
    [17] B. Rotavera and E. L. Petersen, Proc. Combust. Inst. 34, 435 (2013). doi:  10.1016/j.proci.2012.06.042
    [18] Z. Hong, K. Y. Lam, D. F. Davidson, and R. K. Hanson, Combust. Flame 158, 1456 (2011). doi:  10.1016/j.combustflame.2010.12.019
    [19] R. F. Pottie, A. G. Harrison, and F. P. Lossing, J. Am. Chem. Soc. 83, 3204 (1961). doi:  10.1021/ja01476a009
    [20] M. Q. Cao, J. Chen, W. Z. Fang, Y. Q. Li, S. L. Ge, X. B. Shan, F. Y. Liu, Y. J. Zhao, Z. Y. Wang, and L. S. Sheng, Eur. J. Mass Spectrom. 20, 419 (2014). doi:  10.1255/ejms.1304
    [21] G. B. Chu, J. Chen, F. Y. Liu, X. B. Shan, J. G. Han, and L. S. Sheng, Chem. Phys. 416, 26 (2013). doi:  10.1016/j.chemphys.2013.02.027
    [22] F. Y. Liu, C. X. Li, G. H. Wu, H. Gao, F. Qi, L. S. Sheng, Y. W. Zhang, S. Q. Yu, S. H. Chien, and W. K. Li, J. Phys. Chem. A 105, 2973 (2001). doi:  10.1021/jp0027546
    [23] Y. L. Song, J. Chen, M. M. Ding, B. Wei, M. Q. Cao, X. B. Shan, Y. J. Zhao, C. Q. Huang, L. S. Sheng, and F. Y. Liu, J. Mol. Struct. 1094, 83 (2015). doi:  10.1016/j.molstruc.2015.04.009
    [24] Y. Xie, L. L. Cao, Q. Zhang, J. Chen, G. B. Chu, Y. J. Zhao, X. B. Shan, F. Y. Liu, and L. S. Sheng, Chin. J. Chem. Phys. 25, 379 (2012). doi:  10.1088/1674-0068/25/04/379-388
    [25] Z. H. Li, Y. P. Yu, X. Lin, J. Chen, H. Zhang, Y. B. Li, H. H. Wang, Q. H. Meng, R. R. Sun, X. B Shan, F. Y. Liu, and L. S. Sheng, Chin. J. Chem. Phys. 31, 619 (2018). doi:  10.1063/1674-0068/31/cjcp1804084
    [26] M. Wang, J. Chen, W. F. Fei, Z. H. Li, Y. P. Yu, X. Lin, X. B. Shan, F. Y. Liu, and L. S. Sheng, Chin. J. Chem. Phys. 31, 379 (2018). https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113880
    [27] J. Chen, M. Q. Cao, B. Wei, M. M. Ding, X. B. Shan, F. Y. Liu, and L. S. Sheng, J. Mass Spectrom. 51, 169 (2016). doi:  10.1002/jms.3743
    [28] R. H. Hertwig and W. Koch, Chem. Phys. Lett. 268, 345 (1997). doi:  10.1016/S0009-2614(97)00207-8
    [29] S. N.Maximoff and G. E. Scuseria, Chem. Phys. Lett. 390, 408 (2004). doi:  10.1016/j.cplett.2004.04.049
    [30] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994). doi:  10.1021/j100096a001
    [31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, H. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. M. Martain, K. Morokuma, V. G. Zakrzewski, G. A.Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Wallingford, CT: Gaussian, Inc., (2009).
    [32] J. L.Holmes and F. P. Lossing, Org. Mass Spectrom. 26, 537 (1991). doi:  10.1002/oms.1210260603
    [33] M. Meot-Ner, L. W. Sieck, and P. Ausloos, J. Am. Chem. Soc. 103, 5342 (1981). doi:  10.1021/ja00408a011
    [34] S. Rang, P. Paldoia, and A. Talvari, Eesti. NSV Tead. Akad. Toim. 354 (1974).
    [35] K. Watanabe, T. Nakayama, and J. Mottl, J. Quant. Spectry. Radiative Transfer 2, 369 (1962). doi:  10.1016/0022-4073(62)90023-7
    [36] S. Han, H. S. Yoo, D. Ahn, Y. S. Choi, and S. K. Kim, Chem. Phys. Lett. 518, 38 (2011). doi:  10.1016/j.cplett.2011.11.005
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  50
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-15
  • 录用日期:  2019-06-21
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回