留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-Dimensional Cu-Ni Composite Superamphiphobic Surface via Electrodeposition and Fluorosilane Modification

Wei-yi Liu Meng-fan Luo Fang Luo Yan Liu Yan-zong Zhang Fei Shen Xiao-hong Zhang Yang Gang Wang Li-lin Deng Shi-huai

刘维仪, 罗孟帆, 罗方, 刘燕, 张延宗, 沈飞, 张小洪, 杨刚, 王莉淋, 邓仕槐. 通过电沉积及氟硅烷改性而成的三维铜镍复合超疏水表面[J]. 仁和测试, 2020, 33(3): 343-348. doi: 10.1063/1674-0068/cjcp1905109
引用本文: 刘维仪, 罗孟帆, 罗方, 刘燕, 张延宗, 沈飞, 张小洪, 杨刚, 王莉淋, 邓仕槐. 通过电沉积及氟硅烷改性而成的三维铜镍复合超疏水表面[J]. 仁和测试, 2020, 33(3): 343-348. doi: 10.1063/1674-0068/cjcp1905109
Wei-yi Liu, Meng-fan Luo, Fang Luo, Yan Liu, Yan-zong Zhang, Fei Shen, Xiao-hong Zhang, Yang Gang, Wang Li-lin, Deng Shi-huai. Three-Dimensional Cu-Ni Composite Superamphiphobic Surface via Electrodeposition and Fluorosilane Modification[J]. Rhhz Test, 2020, 33(3): 343-348. doi: 10.1063/1674-0068/cjcp1905109
Citation: Wei-yi Liu, Meng-fan Luo, Fang Luo, Yan Liu, Yan-zong Zhang, Fei Shen, Xiao-hong Zhang, Yang Gang, Wang Li-lin, Deng Shi-huai. Three-Dimensional Cu-Ni Composite Superamphiphobic Surface via Electrodeposition and Fluorosilane Modification[J]. Rhhz Test, 2020, 33(3): 343-348. doi: 10.1063/1674-0068/cjcp1905109

通过电沉积及氟硅烷改性而成的三维铜镍复合超疏水表面

doi: 10.1063/1674-0068/cjcp1905109

Three-Dimensional Cu-Ni Composite Superamphiphobic Surface via Electrodeposition and Fluorosilane Modification

More Information
  • 摘要: 将Cu-Ni微纳米颗粒电沉积在铝基底上,通过1H、1H、2H、\2H-全氟癸基三甲氧基硅烷(FAS-17)对其进行修饰,制备了超双疏(SAP)表面.采用扫描电子显微镜、X射线衍射、能量色散X射线光谱和傅里叶变换红外光谱对其形貌和化学成分进行了研究.结果表明,SAP表面具有三维微纳结构,最大水接触角160.0$ ^\circ $,油接触角151.6$ ^\circ $.进一步测试了SAP表面的机械强度和化学稳定性,结果显示该SAP表面具有优良的耐磨性、耐酸耐碱性能、自洁性和防污性能.
  • Scheme 1.  Preparation process of Cu-Ni/FAS-17 coating.

    Figure  1.  SEM images of (a) polished aluminum and (c) SAP surface, (b) and (d) partial enlarged view of the marked region in (a) and (c)

    Figure  2.  (a) XRD patterns of (i) Al substrate and (ii) SAP surface, (b) EDS spectra, (c) XPS spectrum of Al substrate and SAP surface, and (d) FT-IR spectra of (i) Cu-Ni and (ii) SAP surface.

    Figure  3.  (a) WCAs and OCAs with different deposition time. (b) SEM image of surface deposition for 8 min. (c) WCAs and OCAs under different processing conditions. (d) Optical image of water and cooking oil droplets on SAP surface.

    Figure  4.  (a) The methodology of the abrasion test. (b) WCAs and OCAs, (c) WSAs and OSAs during abrasion test

    Figure  5.  Effect of pH value in solution on the wettability ofthe SAP surface.

    Figure  6.  Self-cleaning effect experiments: (a1, a2, a3) SAP surface immersed into the contaminated water, (b1) SAP surface dusted with cement paste, (b2, b3) SAP surface cleaned with distilled water, (b4) cement paste completely removed from the surface.

  • [1] Y. Liu, J. Z. Xue, D. Luo, H. Y. Wang, X. Gong, Z. W. Han, and L. Q. Ren, J. Colloid Interface Sci. 491 313 (2017). doi:  10.1016/j.jcis.2016.12.022
    [2] Q. Y. Yu, Z. X. Zeng, W. J. Zhao, M. H. Li, X. D. Wu, and Q. J. Xue, Colloids Surf. A 427 1 (2013). doi:  10.1016/j.colsurfa.2013.02.067
    [3] R. V. Lakshmi, P. Bera, C. Anandan, and B. J. Basu, Appl. Surf. Sci. 320 780 (2014). doi:  10.1016/j.apsusc.2014.09.150
    [4] H. Li and S. R. Yu, J. Taiwan Inst. Chem. E. 63 411 (2016). doi:  10.1016/j.jtice.2016.02.022
    [5] N. Wen, S. Peng, X. J. Yang, M. Y. Long, W. S. Deng, G. Y. Chen, J. Q. Chen, and W. L. Deng, Adv. Eng. Mater. 19 1600879 (2017). doi:  10.1002/adem.201600879
    [6] Y. X. Song, C. Wang, X. R. Dong, K. Yin, F. Zhang, Z. Xie, D. K. Chu, and J. A. Duan, Opt. Laser Technol. 102 25 (2018). doi:  10.1016/j.optlastec.2017.12.024
    [7] B. B. Xia, H. T. Liu, Y. N. Fan, W. Zhu, and C. Geng, Adv. Eng. Mater. 19 1600572 (2017). doi:  10.1002/adem.201600572
    [8] H. X. Wang, Y. H. Xue, and T. Lin, Soft Matter 7 8158 (2011). doi:  10.1039/c1sm05621b
    [9] K. N. Al-Milaji and H. Zhao, Appl. Surf. Sci. 396 955 (2017). doi:  10.1016/j.apsusc.2016.11.067
    [10] G. He, S. X. Lu, W. G. Xu, P. Ye, G. X. Liu, H. T. Wang, and T. L. Dai, J. Alloys Compd. 747 772 (2018). doi:  10.1016/j.jallcom.2018.03.108
    [11] H. Y. Wang, Y. X. Zhu, Z. Y. Hu, X. G. Zhang, S. Q. Wu, R. Wang, and Y. J. Zhu, Chem. Eng. J. 303 37 (2016). doi:  10.1016/j.cej.2016.05.133
    [12] B. Y. Zhang, S. X. Lu, W. G. Xu, and Y. Y. Cheng, Appl. Surf. Sci. 360 904 (2016). doi:  10.1016/j.apsusc.2015.11.083
    [13] Y. Liu, S. Y. Li, Y. M. Wang, H. Y. Wang, K. Gao, Z. W. Han, and L. Q. Ren, J. Colloid Interface Sci. 478 164 (2016). doi:  10.1016/j.jcis.2016.06.006
    [14] L. J. Liu, W. K. Liu, R. F. Chen, X. Li, and X. J. Xie, Chem. Eng. J. 281 804 (2015). doi:  10.1016/j.cej.2015.07.028
    [15] B. Zhang, H. T. Feng, F. Lin, Y. B. Wang, L. P. Wang, Y. P. Dong, and W. Li, Appl. Surf. Sci. 378 388 (2016). doi:  10.1016/j.apsusc.2016.04.004
    [16] A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40 546 (1944). doi:  10.1039/tf9444000546
    [17] R. N. Wenzel, Ind. Eng. Chem. 28 988 (1936). doi:  10.1021/ie50320a024
    [18] D. Wang, A. Villa, F. Porta, L. Prati, and D. S. Su, J. Phys. Chem. C 112 8617 (2008).
    [19] L. L. Zhao, Y. Huang, H. Y. Chen, Y. X. Zhao, and T. C. Xiao, Fuel 197 20 (2017). doi:  10.1016/j.fuel.2017.01.122
    [20] F. Amiripour, S. N. Azizi, and S. Ghasemi, Biosens. Bioelectron. 107 111 (2018). doi:  10.1016/j.bios.2018.02.016
    [21] H. B. Lee, Tribol. Lett. 50 407 (2013). doi:  10.1007/s11249-013-0134-x
    [22] J. L. Song, S. Huang, K. Hu, Y. Lu, X. Liu, and W. J. Xu, J. Mater. Chem. A 1 14783 (2013). doi:  10.1039/c3ta13807k
    [23] Y. F. Zhou, T. Hang, F. Li, and M. Li, Appl. Surf. Sci. 271 369 (2013). doi:  10.1016/j.apsusc.2013.01.208
    [24] J. D. Brassard, D. K. Sarkar, and J. Perron, Appl. Sci. 2 453 (2012). doi:  10.3390/app2020453
    [25] X. J. Guo, C. H. Xue, S. T. Jia, and J. Z. Ma, Chem. Eng. J. 320 330 (2017). doi:  10.1016/j.cej.2017.03.058
    [26] Y. Q. Qing, C. N. Yang, Q. Q. Zhao, C. B. Hu, and C. S. Liu, J. Alloys Compd. 695 1878 (2017). doi:  10.1016/j.jallcom.2016.10.323
    [27] Z. S. Saifaldeen, K. R. Khedir, M. T. Camci, A. Ucar, S. Suzer, and T. Karabacak, Appl. Surf. Sci. 379 55 (2016). doi:  10.1016/j.apsusc.2016.04.050
    [28] J. Tsibouklis and T. G. Nevell, Adv. Mater. 15 647 (2003). doi:  10.1002/adma.200301638
    [29] F. Z. Chen, J. L. Song, Y. Lu, S. Huang, X. Liu, J. Sun, C. J. Carmalt, I. P. Parkinb, and W. J. Xu, J. Mater. Chem. A 3 20999 (2015). doi:  10.1039/C5TA05333A
    [30] C. D. Jin, J. P. Li, S. J. Han, J. Wang, and Q. F. Sun, Appl. Surf. Sci. 320 322 (2014). doi:  10.1016/j.apsusc.2014.09.065
    [31] Y. Liu, H. J. Cao, S. G. Chen, and D. A. Wang, J. Phys. Chem. C 119 25449 (2015). doi:  10.1021/acs.jpcc.5b08679
    [32] Q. Y. Wen, F. Guo, Y. B. Peng, and Z. G. Guo, Colloids Surf. A: Physicochem. Eng. Aspects 539 11 (2018). doi:  10.1016/j.colsurfa.2017.12.007
    [33] A. L. Ma, S. L. Jiang, Y. G. Zheng, and W. Ke, Corros. Sci. 91 245 (2015). doi:  10.1016/j.corsci.2014.11.028
    [34] J. Zhang, M. D. Baro, E. Pellicer, and J. Sort, Nanoscale 6 12490 (2014). doi:  10.1039/C4NR03200D
    [35] E. J. Lee, A. K. An, T. He, Y. C. Woo, and H. K. Shon, J. Membr. Sci. 520 145 (2016). doi:  10.1016/j.memsci.2016.07.019
  • 加载中
图(7)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-08-30
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回