留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic Nano-Amorphous-Iron-Oxide-Based Drug Delivery System with Dual Therapeutic Mechanisms

Shan Lei Li-an Wang Fu-xing Lin Kun Zeng Mo-zhen Wang Mo-zhen Wang

雷珊, 王黎安, 林福星, 曾琨, 汪谟贞, 葛学武. 具有双重治疗机制的磁性纳米无定型氧化铁基药物递送系统[J]. 仁和测试, 2020, 33(3): 376-384. doi: 10.1063/1674-0068/cjcp1906123
引用本文: 雷珊, 王黎安, 林福星, 曾琨, 汪谟贞, 葛学武. 具有双重治疗机制的磁性纳米无定型氧化铁基药物递送系统[J]. 仁和测试, 2020, 33(3): 376-384. doi: 10.1063/1674-0068/cjcp1906123
Shan Lei, Li-an Wang, Fu-xing Lin, Kun Zeng, Mo-zhen Wang, Mo-zhen Wang. Magnetic Nano-Amorphous-Iron-Oxide-Based Drug Delivery System with Dual Therapeutic Mechanisms[J]. Rhhz Test, 2020, 33(3): 376-384. doi: 10.1063/1674-0068/cjcp1906123
Citation: Shan Lei, Li-an Wang, Fu-xing Lin, Kun Zeng, Mo-zhen Wang, Mo-zhen Wang. Magnetic Nano-Amorphous-Iron-Oxide-Based Drug Delivery System with Dual Therapeutic Mechanisms[J]. Rhhz Test, 2020, 33(3): 376-384. doi: 10.1063/1674-0068/cjcp1906123

具有双重治疗机制的磁性纳米无定型氧化铁基药物递送系统

doi: 10.1063/1674-0068/cjcp1906123

Magnetic Nano-Amorphous-Iron-Oxide-Based Drug Delivery System with Dual Therapeutic Mechanisms

More Information
  • 摘要: 合成一种具有pH响应性的聚乙二醇(PEG)修饰无定形介孔氧化铁纳米粒子(AFe-PEG).这种纳米粒子可以高效负载药物分子如阿霉素(DOX),构成新型多功能AFe-PEG/DOX药物递送体系. DOX的负载率高达948 mg/g-纳米粒子.在酸性溶液中,AFe-PEG/DOX纳米粒子不仅可以有效释放DOX,同时可以释放Fe离子进行Fenton反应,将H$ _2 $O$ _2 $转变成$ \cdot $OH自由基.体外实验结果表明,AFe-PEG/DOX纳米粒子对HeLa细胞同时具有化疗和化学动力学疗法的疗效.同时,由于AFe-PEG/DOX纳米粒子本身的磁性,使其在外部磁场中的细胞内化效率也得到了提高.
  • Figure  1.  Preparation process of AFe-PEG/DOX nanoparticle.

    Figure  2.  TEM images of (a) PB and (b) AFe. (c) XRD and (d) FTIR spectra of PB and AFe nanoparticles. (e) N$ _2 $ adsorption-desorption isotherms and (f) BJH pore size distribution of AFe nanoparticles.

    Figure  3.  (a) FTIR spectra of DOX and AFe-PEG/DOX nanoparticles. (b) UV-Vis spectra of the PBS (pH = 7.4) solution of DOX (2 mg/mL) before and after the addition of AFe nanoparticles. (c) Release profiles of DOX from AFe-PEG/DOX under different pH values.

    Figure  4.  (a) The real-time release percentage of Fe ion in PBS (at different pH) that contains AFe-PEG nanoparticles. (b) ESR spectra of different reaction systems with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin trap. (c) The real-time absorption of MB in acetate buffer solution (pH = 5.4) containing H$ _2 $O$ _2 $ in the absence and presence of AFe-PEG nanoparticles.

    Figure  5.  (a) Illustration of the dual-mode chemo/chemodynamic therapy mechanism of AFe-PEG/DOX nanoparticles. (b) Cell viabilities of Hela cells after various therapeutic treatments.

    Figure  6.  (a) Representative CLSM images of Hela cells incubated in PBS for 2, 4, 8, and 12 h after the cells had been incubated with AFe-PEG/DOX nanoparticles for 2 h. The cells were co-stained with LysoTracker green (green channel) and DAPI (blue channel). Scale bar is 50 μm. (b) Relative fluorescence intensities of DOX in nuclei and (c) the colocalization ratios of red channel (DOX) and green channel (LysoTracker green) fluorescence deduced from (a).

    Figure  7.  (a) VSM of AFe-PEG nanoparticles. Inset: digital photos of PBS containing AFe-PEG nanoparticles with and without a magnetic field. (b) Representative CLSM images of Hela cells after 2-h's incubation in PBS containing AFe-PEG/DOX in the presence and absence of an external magnetic field. Scale bar is 50 μm. (c) Normalized fluorescence intensities (red channel) of Hela cells calculated from (b).

    S1.  (a) 1H and (b) 13C NMR spectra of PEG-COOH.

    S2.  (a) 1H and (b) 13C NMR spectra of PEG-DA.

    S3.  The working curve of DOX

    S4.  The size distribution of (a) PB and (b) AFe nanoparticles.

    S5.  TGA curve of AFe-PEG nanoparticles.

    S6.  Fluorescence images of Hela cells after being treated with different concentration of AFe-PEG/DOX. Scale bar is 50 μm.

    S7.  Time-dependence quantitative fluorescence change of DOX (red line) and Lysotracker (green line) from FIG. 4 (a) (the yellow line represents the selected cell).

  • [1] O. Rozenfeld, Y. Koltypin, H. Bamnolker, S. Margel, and A. Gedanken, Langmuir, 10, 3919 (1994). doi:  10.1021/la00023a001
    [2] T. Iwamoto, Biol. Pharm. Bull. 36, 715 (2013). doi:  10.1248/bpb.b12-01102
    [3] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, Nat. Nanotechnol. 2, 751 (2007). doi:  10.1038/nnano.2007.387
    [4] R. Mo, T. Jiang, R. DiSanto, W. Tai, and Z. Gu, Nat. Commun. 5, 3364 (2014). doi:  10.1038/ncomms4364
    [5] T. M. Sun, Y. S. Zhang, B. Pang, D. C. Hyun, M. X. Yang, and Y. N. Xia, Angew. Chem. Int. Ed. 53, 12320 (2014).
    [6] X. W. Zeng, G. Liu, W. Tao, Y. Ma, X. D. Zhang, F. He, J. M. Pan, L. Mei, and G. Q. Pan, Adv. Funct. Mater. 27, 1605985 (2017). doi:  10.1002/adfm.201605985
    [7] L. Huang, L. Ao, D. H. Hu, W. Wang, Z. H. Sheng, and W. Su, Chem. Mater. 28, 5896 (2016). doi:  10.1021/acs.chemmater.6b02413
    [8] X. J. Cai, X. Q. Jia, W. Gao, K. Zhang, M. Ma, S. G. Wang, Y. Y. Zheng, J. L. Shi, and H. R. Chen, Adv. Funct. Mater. 25, 2520 (2015). doi:  10.1002/adfm.201403991
    [9] X. J. Cai, W. Gao, M. Ma, M. Y. Wu, L. L. Zhang, Y. Y. Zheng, H. R. Chen, and J. L. Shi, Adv. Mater. 27, 6382 (2015). doi:  10.1002/adma.201503381
    [10] S. Mura, J. Nicolas, and P. Couvreur, Nat. Mater. 12, 991 (2013). doi:  10.1038/nmat3776
    [11] H. J. Xiang, H. Lin, L. D. Yu, and Y. Chen, ACS Nano 13, 2223 (2019).
    [12] W. X. Sun, H. T. Jiang, X. Wu, Z. Y. Xu, C. Yao, J. Wang, M. Qin, Q. Jiang, W. Wang, D. Q. Shi, and Y. Cao, Nano Res. 12, 115 (2018).
    [13] Y. X. Guo, Y. Zhang, J. Y. Ma, Q. Li, Y. Li, X. Y. Zhou, D. Zhao, H. Song, Q. Chen, and X. Zhu, J. Control. Release 272, 145 (2018). doi:  10.1016/j.jconrel.2017.04.028
    [14] P. Mi, D. Kokuryo, H. Cabral, H. L. Wu, Y. Terada, T. Saga, I. Aoki, N. Nishiyama, and K. Kataoka, Nat. Nanotechnol. 11, 724 (2016). doi:  10.1038/nnano.2016.72
    [15] S. Lei, J. X. Chen, K. Zeng, M. Z. Wang, and X. W. Ge, Nano Res. 12, 1071 (2019). doi:  10.1007/s12274-019-2348-1
    [16] C. M. Yu, L. H. Qian, J. Y. Ge, J. Q. Fu, P. Y. Yuan, S. C. L. Yao, and S. Q. Yao, Angew. Chem. Int. Ed. 55, 9272 (2016). doi:  10.1002/anie.201602188
    [17] Y. Q. Zhang, J. Q. Wang, J. C. Yu, D. Wen, A. R. Kahkoska, Y. Lu, X. D. Zhang, J. B. Buse, and Z. Gu, Small 14, e1704181 (2018). doi:  10.1002/smll.201704181
    [18] M. Ahlen, G. K. Tummala, and A. Mihranyan, Int. J. Pharm. 536, 73 (2018). doi:  10.1016/j.ijpharm.2017.11.053
    [19] H. R. Wang, W. W. Zhu, J. J. Liu, Z. L. Dong, and Z. Liu, ACS Appl. Mater. Interfaces 10, 14475 (2018). doi:  10.1021/acsami.8b02080
    [20] X. D. Xue, Y. Huang, R. Bo, B. Jia, H. Wu, Y. Yuan, Z. L. Wang, Z. Ma, D. Jing, X. B. Xu, W. M. Yu, T. Y. Lin, and Y. P. Li, Nat. Commun. 9, 3653 (2018). doi:  10.1038/s41467-018-06093-5
    [21] X. Zhang, X. H. Xu, Y. C. Li, C. Hu, Z. J. Zhang, and Z. W. Gu, Adv. Mater. 30, e1707240 (2018). doi:  10.1002/adma.201707240
    [22] J. Z. Du, X. J. Du, C. Q. Mao, and J. Wang, J. Am. Chem. Soc. 133, 17560 (2011). doi:  10.1021/ja207150n
    [23] Q. Chen, C. Wang, X. D. Zhang, G. J. Chen, Q. Y. Hu, H. J. Li, J. Q. Wang, D. Wen, Y. Q. Zhang, Y. F. Lu, G. Yang, C. Jiang, J. Wang, G. Dotti, and Z. Gu, Nat. Nanotechnol. 14, 89 (2019). doi:  10.1038/s41565-018-0319-4
    [24] J. Nam, S. Son, L. J. Ochyl, R. Kuai, A. Schwendeman, and J. J. Moon, Nat. Commun. 9, 1074 (2018). doi:  10.1038/s41467-018-03473-9
    [25] Y. L. Dai, Z. Yang, S. Y. Cheng, Z. Y. Wang, R. L. Zhang, G. Z. Zhu, Z. T. Wang, B. C. Yung, R. Tian, O. Jacobson, C. Xu, Q. Q. Ni, J. B. Song, X. L. Sun, G. Niu, and X. Y. Chen, Adv. Mater. 30, 1704877 (2018). doi:  10.1002/adma.201704877
    [26] J. X. Chen, S. Lei, K. Zeng, M. Z. Wang, A. Asif, and X. W. Ge, Nano Res. 10, 2351 (2017). doi:  10.1007/s12274-017-1431-8
    [27] M. Hu, S. Furukawa, R. Ohtani, H. Sukegawa, Y. Nemoto, J. Reboul, S. Kitagawa, and Y. Yamauchi, Angew. Chem. Int. Ed. 51, 984 (2012). doi:  10.1002/anie.201105190
    [28] M. Hu, A. A. Belik, M. Imura, K. Mibu, Y. Tsujimoto, and Y. Yamauchi, Chem. Mater. 24, 2698 (2012). doi:  10.1021/cm300615s
    [29] J. L. Shi, Nanomedicine 11, 1189 (2016) doi:  10.2217/nnm-2016-0039
    [30] L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, and X. W. Lou, J. Am. Chem. Soc. 134, 17388 (2012). doi:  10.1021/ja307475c
    [31] K. S. W. Sing, Pure Appl. Chem. 57, 603 (1985). doi:  10.1351/pac198557040603
    [32] S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, J. Am. Chem. Soc. 62, 1723 (1940). doi:  10.1021/ja01864a025
    [33] Y. F. Zhu, J. L. Shi, W. H. Shen, X. P. Dong, J. W. Feng, M. L. Ruan, and Y. S. Li, Angew. Chem. Int. Ed. 44, 5083 (2005). doi:  10.1002/anie.200501500
    [34] W. R. Zhao, H. R. Chen, Y. S. Li, L. Li, M. D. Lang, and J. L. Shi, Adv. Funct. Mater. 18, 2780 (2008). doi:  10.1002/adfm.200701317
    [35] Y. Chen, H. R. Chen, D. P. Zeng, Y. B. Tian, F. Chen, J. W. Feng, and J. L. Shi, ACS Nano 4, 6001 (2010). doi:  10.1021/nn1015117
    [36] F. X. Lin, K. Zeng, W. X. Yang, M. Z. Wang, J. L. Rong, J. Xie, Y. Zhao, and X. W. Ge, Chin. J. Chem. Phys. 30, 231 (2017). doi:  10.1063/1674-0068/30/cjcp1609185
  • 加载中
图(14)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 录用日期:  2019-08-16
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回