留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning Structural, Electronic, and Magnetic Properties of Black-AsP Monolayer by Adatom Adsorptions: A First Principles Study

Xin Liu Yu-xiang Ni Hong-yan Wang Hui Wang

Xin Liu, Yu-xiang Ni, Hong-yan Wang, Hui Wang. Tuning Structural, Electronic, and Magnetic Properties of Black-AsP Monolayer by Adatom Adsorptions: A First Principles Study[J]. Rhhz Test, 2020, 33(3): 311-318. doi: 10.1063/1674-0068/cjcp1907136
Citation: Xin Liu, Yu-xiang Ni, Hong-yan Wang, Hui Wang. Tuning Structural, Electronic, and Magnetic Properties of Black-AsP Monolayer by Adatom Adsorptions: A First Principles Study[J]. Rhhz Test, 2020, 33(3): 311-318. doi: 10.1063/1674-0068/cjcp1907136

doi: 10.1063/1674-0068/cjcp1907136

Tuning Structural, Electronic, and Magnetic Properties of Black-AsP Monolayer by Adatom Adsorptions: A First Principles Study

More Information
  • 摘要: 基于第一性原理,系统研究了11种不同原子吸附在单层AsP上的几何结构、吸附能、磁矩和电子结构性质. 使用的吸附原子包括轻质非金属(C、N、O)原子,第三周期金属原子(Na、Mg、Al)和过渡金属原子(Ti、V、Cr、Mn和Fe). 研究结果表明,吸附原子引起了AsP多样的结构、磁性和电子性质改变. AsP与所研究的吸附原子都能紧密结合,并且所有系统的吸附能都比吸附原子在石墨烯、SiC、BN以及MoS$ _2 $上的吸附能强得多. AsP的半导体特性受到吸附原子的影响,其可以诱导产生中间能隙态或引起n型掺杂. 此外,表面吸附产生了不同的自旋电子特性,具体而言,吸附N、Ti和Fe的AsP成为双极半导体;Mn修饰的AsP成为双极自旋无间隙半导体.
  • Figure  1.  (a) Illustration of top and side view of AsP monolayer. (b) Electronic band structure of pristine AsP

    Figure  2.  Typical adatom adsorption sites on AsP monolayer: (a) H, (b) B, (c) T$ _{\rm{P}} $, and (d) T$ _{\rm{As}} $

    Figure  3.  The charge density difference of single (a) C, (b) N, and (c) O adsorbed on the AsP monolayer; the band structure of (d) C-, (e) N-, and (f) O-adsorbed AsP; the PDOS of (g) C-, (h) N-, and (i) O-adsorbed AsP.

    Figure  4.  The charge density difference of single (a) Na, (b) Mg, and (c) Al adsorbed on the AsP monolayer; the band structure of (d) Na-, (e) Mg-, and (f) Al-adsorbed AsP; the PDOS of (g) Na-, (h) Mg-, and (i) Al-adsorbed AsP.

    Figure  5.  The charge density difference of single (a) Ti, (b) V, (c) Cr, (d) Mn, (e) Fe adsorbed on the AsP monolayer.

    Figure  6.  The band structure of (a) Ti-, (b) V-, (c) Cr-, (d) Mn-, (e) Fe- adsorbed AsP; the PDOS of (f) Ti-, (g) V-, (h) Cr-, (i) Mn-, and (j) Fe-adsorbed AsP.

    Table  Ⅰ.   Calculated structural and magnetic properties for single atoms adsorbed on (2×3 supercell) AsP at the most favorable adsorption sites:

    下载: 导出CSV
  • [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). doi:  10.1126/science.1102896
    [2] Y. Lin and J. W. Connell, Nanoscale 4, 6908 (2012). doi:  10.1039/c2nr32201c
    [3] R. T. Paine and C. K. Narula, Chem. Rev. 90, 73 (1990). doi:  10.1021/cr00099a004
    [4] M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013). doi:  10.1021/cr300263a
    [5] C. Tan and H. Zhang, Chem. Soc. Rev. 44, 2713 (2015). doi:  10.1039/C4CS00182F
    [6] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014). doi:  10.1038/nnano.2014.35
    [7] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014). doi:  10.1021/nn501226z
    [8] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Nano Lett. 14, 3347 (2014). doi:  10.1021/nl5008085
    [9] W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, and Z. Zhang, Nano Res. 7, 853 (2014). doi:  10.1007/s12274-014-0446-7
    [10] Y. Cai, G. Zhang, and Y. W. Zhang, Sci. Rep. 4, 6677 (2014). https://www.nature.com/articles/ismej2011109
    [11] J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat. Commun. 5, 4475 (2014). doi:  10.1038/ncomms5475
    [12] J. Xiao, M. Long, X. Zhang, J. Ouyang, H. Xu, and Y. Gao, Sci. Rep. 5, 9961 (2015). doi:  10.1038/srep09961
    [13] R. Fei, A. Faghaninia, R. Soklaski, J. A. Yan, C. Lo, and L. Yang, Nano Lett. 14, 6393 (2014). doi:  10.1021/nl502865s
    [14] Z. Y. Ong, Y. Cai, G. Zhang, and Y. W. Zhang, J. Phys. Chem. C 118, 25272 (2014). doi:  10.1021/jp5079357
    [15] Y. Cai, Q. Ke, G. Zhang, Y. P. Feng, V. B. Shenoy, and Y. W. Zhang, Adv. Funct. Mater. 25, 2230 (2015). doi:  10.1002/adfm.201404294
    [16] Y. Du, H. Liu, Y. Deng, and P. D. Ye, ACS Nano 8, 10035 (2014). doi:  10.1021/nn502553m
    [17] J. Na, Y. T. Lee, J. A. Lim, D. K. Hwang, G. T. Kim, W. K. Choi, and Y. W. Song, ACS Nano 8, 11753 (2014). doi:  10.1021/nn5052376
    [18] A. Avsar, I. J. Vera-Marun, J. Y. Tan, K. Watanabe, T. Taniguchi, A. H. Castro Neto, and B. Özyilmaz, ACS Nano 9, 4138 (2015). doi:  10.1021/acsnano.5b00289
    [19] W. Zhu, M. N. Yogeesh, S. Yang, S. H. Aldave, J. S. Kim, S. Sonde, L. Tao, N. Lu, and D. Akinwande, Nano Lett. 15, 1883 (2015). doi:  10.1021/nl5047329
    [20] P. J. Jeon, Y. T. Lee, J. Y. Lim, J. S. Kim, D. K. Hwang, and S. Im, Nano Lett. 16, 1293 (2016). doi:  10.1021/acs.nanolett.5b04664
    [21] M. V. Kamalakar, B. Madhushankar, A. Dankert, and S. P. Dash, Small 11, 2209 (2015). doi:  10.1002/smll.201402900
    [22] S. Zhao, W. Kang, and J. Xue, J. Mater. Chem. A 2, 19046 (2014). doi:  10.1039/C4TA04368E
    [23] W. Li, Y. Yang, G. Zhang, and Y. W. Zhang, Nano Lett. 15, 1691 (2015). doi:  10.1021/nl504336h
    [24] J. Sun, H. W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, and Y. Cui, Nat. Nanotechnol. 10, 980 (2015). doi:  10.1038/nnano.2015.194
    [25] R. Babar and M. Kabir, J. Phys. Chem. C 120, 14991 (2016). doi:  10.1021/acs.jpcc.6b05069
    [26] L. Zu, X. Gao, H. Lian, C. Li, Q. Liang, Y. Liang, X. Cui, Y. Liu, X. Wang, and X. Cui, J. Alloy. Compd. 770, 26 (2019). doi:  10.1016/j.jallcom.2018.07.265
    [27] Y. Cai, Q. Ke, G. Zhang, and Y. W. Zhang, J. Phys. Chem. C 119, 3102 (2015). doi:  10.1021/jp510863p
    [28] A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, ACS Nano 9, 5618 (2015). doi:  10.1021/acsnano.5b01961
    [29] S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, Nat. Commun. 6, 8632 (2015). doi:  10.1038/ncomms9632
    [30] B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, and F. Pielnhofer, Adv. Mater. 27, 4423 (2015). doi:  10.1002/adma.201501758
    [31] Z. Zhu, J. Guan, and D. Tománek, Nano Lett. 15, 6042 (2015). doi:  10.1021/acs.nanolett.5b02227
    [32] F. Shojaei and H. S. Kang, J. Phys. Chem. C 119, 20210 (2015). doi:  10.1021/acs.jpcc.5b07323
    [33] M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, and H. Zeng, Nano Energy 28, 433 (2016). doi:  10.1016/j.nanoen.2016.08.058
    [34] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, Nat. Mater. 8, 76 (2008).
    [35] C. Cao, M. Wu, J. Jiang, and H. P. Cheng, Phys. Rev. B 81, 205424 (2010). doi:  10.1103/PhysRevB.81.205424
    [36] M. Wu, C. Cao, and J. Z. Jiang, Nanotechnology 21, 505202 (2010). doi:  10.1088/0957-4484/21/50/505202
    [37] X. Lin and J. Ni, Phys. Rev. B 86, 075440 (2012). doi:  10.1103/PhysRevB.86.075440
    [38] H. Sahin and F. M. Peeters, Phys. Rev. B 87, 085423 (2013). doi:  10.1103/PhysRevB.87.085423
    [39] J. Sivek, H. Sahin, B. Partoens, and F. M. Peeters, Phys. Rev. B 87, 085444 (2013). doi:  10.1103/PhysRevB.87.085444
    [40] V. Q. Bui, T. T. Pham, H. V. S. Nguyen, and H. M. Le, J. Phys. Chem. C 117, 23364 (2013). doi:  10.1021/jp407601d
    [41] T. P. Kaloni, J. Phys. Chem. C 118, 25200 (2014). doi:  10.1021/jp5058644
    [42] S. S. Li, C. W. Zhang, W. X. Ji, F. Li, P. J. Wang, S. J. Hu, S. S. Yan, and Y. S. Liu, Phys. Chem. Chem. Phys. 16, 15968 (2014). doi:  10.1039/C4CP01211A
    [43] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi:  10.1016/0927-0256(96)00008-0
    [44] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi:  10.1103/PhysRevB.54.11169
    [45] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi:  10.1103/PhysRevLett.77.3865
    [46] P. E. BlÖchl, Phys. Rev. B 50, 17953 (1994). doi:  10.1103/PhysRevB.50.17953
    [47] S. Grimme, J. Comput. Chem. 27, 1787 (2006). doi:  10.1002/jcc.20495
    [48] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Dalton Trans. 2832 (2008). https://pubmed.ncbi.nlm.nih.gov/18478144/
    [49] B. Gamoke, D. Neff, and J. Simons, J. Phys. Chem. A 113, 5677 (2009). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19378976
    [50] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, and Z. Jiao, Chem. Mater. 21, 3136 (2009). doi:  10.1021/cm900395k
    [51] H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, and G. Cui, J. Mater. Chem. 21, 5430 (2011). doi:  10.1039/c1jm00049g
    [52] W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng, J. Zhang, Z. Liu, L. Dai, and G. Shi, Sci. Rep. 3, 2248 (2013). doi:  10.1038/srep02248
    [53] E. Durgun, S. Dag, S. Ciraci, and O. Gülseren, J. Phys. Chem. B 108, 575 (2004). doi:  10.1021/jp0358578
    [54] Y. Li, Z. Zhou, P. Shen, and Z. Chen, ACS Nano 3, 1952 (2009). doi:  10.1021/nn9003428
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-10
  • 录用日期:  2019-10-06
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回