留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Facile Green Synthesis of Magnetic Fe$ _\textbf{3} $C@C Nanocomposite using Natural Magnetite

Ju-wen Gu Yong Bai Song-bai Qiu Qian Zhang Tie-jun Wang

古桔文, 白勇, 仇松柏, 张浅, 王铁军. 利用天然磁铁矿简易绿色合成磁性Fe$ _\bf{3} $C$ @ $C纳米材料[J]. 仁和测试, 2020, 33(3): 371-375. doi: 10.1063/1674-0068/cjcp1907142
引用本文: 古桔文, 白勇, 仇松柏, 张浅, 王铁军. 利用天然磁铁矿简易绿色合成磁性Fe$ _\bf{3} $C$ @ $C纳米材料[J]. 仁和测试, 2020, 33(3): 371-375. doi: 10.1063/1674-0068/cjcp1907142
Ju-wen Gu, Yong Bai, Song-bai Qiu, Qian Zhang, Tie-jun Wang. Facile Green Synthesis of Magnetic Fe$ _\textbf{3} $C@C Nanocomposite using Natural Magnetite[J]. Rhhz Test, 2020, 33(3): 371-375. doi: 10.1063/1674-0068/cjcp1907142
Citation: Ju-wen Gu, Yong Bai, Song-bai Qiu, Qian Zhang, Tie-jun Wang. Facile Green Synthesis of Magnetic Fe$ _\textbf{3} $C@C Nanocomposite using Natural Magnetite[J]. Rhhz Test, 2020, 33(3): 371-375. doi: 10.1063/1674-0068/cjcp1907142

利用天然磁铁矿简易绿色合成磁性Fe$ _\bf{3} $C$ @ $C纳米材料

doi: 10.1063/1674-0068/cjcp1907142

Facile Green Synthesis of Magnetic Fe$ _\textbf{3} $C@C Nanocomposite using Natural Magnetite

More Information
  • 摘要: 采用改进的溶胶凝胶法,以天然磁铁矿为铁源,开发出一种制备过程简单且环境友好且低成本的磁性Fe$ _3 $C$ @ $C纳米材料制备策略.其中,柠檬酸作为多元羧酸络合剂,不但可以有效地溶解不同铁源,例如Fe、Fe$ _3 $O$ _4 $或天然磁铁矿,形成柠檬酸铁盐络合物;还可以在热解过程中作为碳源,形成包裹碳层.通过控制高温热解过程可以直接形成特殊的核-壳结构形态. Fe$ _3 $C$ @ $C纳米材料具有超顺磁性特性(38.09 emu/mg).
  • Figure  1.  XRD patterns of the Fe$ _3 $C@C samples from (A) Fe$ _3 $O$ _4 $ and (B) after acid-treatment, and (C, D) from different iron sources with (D) after acid-treatment calcined at 700 $ ^{\circ} $C.

    Figure  2.  Typical SEM images of the Fe$ _3 $C@C samples obtained at 700 $ ^{\circ} $C from (A) Fe$ _3 $O$ _4 $ and (B) natural magnetite

    Figure  3.  TEM images of the Fe$ _3 $C@C samples obtained at 500 $ ^{\circ} $C from Fe$ _3 $O$ _4 $ A(a) before and A(b) after acid-treatment, at 700 $ ^{\circ} $C from Fe$ _3 $O$ _4 $; B(a) before, B(b) and B(c) after acid washing, at 700 $ ^{\circ} $C with natural magnetite; C(a) before, C(b) and C(c) after acid washing.

    Figure  4.  The magnetic hysteresis loop of the Fe$ _3 $C@C samples prepared from different iron sources at 700 $ ^{\circ} $C (a) before and (b) after acid washing.

    Figure  5.  Schematic of the synthesis process of the Fe$ _3 $C@C samples modified by sol-gel method.

    Supplementary Fig. 1.  TG and DTG profiles of the fully dried gel precursor from natural magnetite (10 ℃/min in N2)

    Supplementary Fig 2.  The magnetic hysteresis loop of the Fe3C@C samples prepared from pure Fe3O4 and Fe at 700 ℃ (a) before and (b) after acid washing.

    Supplementary Table 1.   The element composition of the natural magnetite and the as-prepared Fe3C@C sample.

    下载: 导出CSV

    Supplementary Table 2.   Textural properties of the samples.

    下载: 导出CSV
  • [1] M. Munoz, Z. M. de Pedro, J. A. Casas, and J. J. Rodriguez, Appl. Catal. B 176, 249 (2015).
    [2] Y. Pan, X. W. Du, F. Zhao, and B. Xu, Chem. Soc. Rev. 41, 2912 (2012). doi:  10.1039/c2cs15315g
    [3] L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, Particuology 30, 1 (2017). doi:  10.1016/j.partic.2016.06.001
    [4] J. P. Wang, Y. Z. Chen, S. J. Yuan, G. P. Sheng, and H. Q. Yu, Water Res. 43, 5267 (2009). doi:  10.1016/j.watres.2009.08.040
    [5] Y. C. Wu, J. R. Rao, and X. F. Li, Chin. J. Chem. Phys. 31, 576 (2018).
    [6] B. Tang, G. X. Hu, and M. Xia, Mater. Lett. 68, 104 (2012). doi:  10.1016/j.matlet.2011.10.059
    [7] S. Atiq, S. M. Ramay, A. Mahmood, S. Riaz, and S. Naseem, Chin. J. Chem. Phys. 29, 245 (2016). doi:  10.1063/1674-0068/29/cjcp1507158
    [8] Z. T. Ye, P. Zhang, X. Lei, X. B. Wang, N. Zhao, and H. Yang, Chem. Eur. J. 24, 8922 (2018). doi:  10.1002/chem.201706028
    [9] F. Y. Gong, T. Q. Ye, L.X. Yuan, T. Kan, Y. Torimoto, M. Yamamoto, and Q. X. Li, Green Chem. 11, 2001 (2009). doi:  10.1039/b915830h
    [10] V. R. Ambikadevi and M. Lalithambika, Appl. Clay Sci. 16, 133 (2000). doi:  10.1016/S0169-1317(99)00038-1
    [11] X. B. Wang, P. Zhang, J. J. Gao, X. D. Chen, and H. Yang, Dyes Pigment. 112, 305 (2015). doi:  10.1016/j.dyepig.2014.07.021
    [12] P. Gorria, M. Sevilla, J. A. Blanco, and A. B. Fuertes, Carbon 44, 1954 (2006). doi:  10.1016/j.carbon.2006.02.013
    [13] J. Bao, J. J. He, Y. Zhang, Y. Yoneyama, and N. Tsubaki, Angew. Chem. Int. Ed. 47, 353 (2008). doi:  10.1002/anie.200703335
    [14] A. V. Erokhin, E. S. Lokteva, A. Y. Yermakov, D. W. Boukhvalov, K. I. Maslakov, E. V. Golubina, and M. A. Uimin, Carbon 74, 291 (2014). doi:  10.1016/j.carbon.2014.03.034
    [15] Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, and Q. Li, Angew. Chem. Int. Ed. 53, 3675 (2014). doi:  10.1002/anie.201400358
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  21
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-23
  • 录用日期:  2019-09-10
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回