留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly Sensitive Flexible Pressure Sensors based on Graphene/Graphene Scrolls Multilayer Hybrid Films

Yi-heng Zhai Tao Wang Zhi-kai Qi Xiang-hua Kong Hang-xun Xu Heng-xing Ji

翟毅恒, 汪韬, 齐志凯, 孔祥华, 徐航勋, 季恒星. 基于石墨烯/石墨烯卷轴复合薄膜高灵敏度柔性压力传感器[J]. 仁和测试, 2020, 33(3): 365-370. doi: 10.1063/1674-0068/cjcp1907146
引用本文: 翟毅恒, 汪韬, 齐志凯, 孔祥华, 徐航勋, 季恒星. 基于石墨烯/石墨烯卷轴复合薄膜高灵敏度柔性压力传感器[J]. 仁和测试, 2020, 33(3): 365-370. doi: 10.1063/1674-0068/cjcp1907146
Yi-heng Zhai, Tao Wang, Zhi-kai Qi, Xiang-hua Kong, Hang-xun Xu, Heng-xing Ji. Highly Sensitive Flexible Pressure Sensors based on Graphene/Graphene Scrolls Multilayer Hybrid Films[J]. Rhhz Test, 2020, 33(3): 365-370. doi: 10.1063/1674-0068/cjcp1907146
Citation: Yi-heng Zhai, Tao Wang, Zhi-kai Qi, Xiang-hua Kong, Hang-xun Xu, Heng-xing Ji. Highly Sensitive Flexible Pressure Sensors based on Graphene/Graphene Scrolls Multilayer Hybrid Films[J]. Rhhz Test, 2020, 33(3): 365-370. doi: 10.1063/1674-0068/cjcp1907146

基于石墨烯/石墨烯卷轴复合薄膜高灵敏度柔性压力传感器

doi: 10.1063/1674-0068/cjcp1907146

Highly Sensitive Flexible Pressure Sensors based on Graphene/Graphene Scrolls Multilayer Hybrid Films

More Information
  • 摘要: 一维导电材料例如纳米线,大量应用于柔性压力传感器中.但是一维材料和基底之间接触时相互作用力较弱,使得传感器灵敏度、响应时间、和循环寿命等性能指标有待进一步提高.针对这些问题,设计了石墨烯/石墨烯卷轴多分子层复合薄膜作为传感器导电层.石墨烯卷轴具有一维结构,而石墨烯的二维结构可以牢固地固定卷轴,以确保高导电性复合薄膜与基底之间的粘附性,同时整体结构的导电通道得到了增加.由于一维和二维结构的协同效应,实现了应变灵敏度系数3.5 kPa$ ^{-1} $、响应时间小于50 ms、能够稳定工作1000次以上的压阻传感器.
  • Figure  1.  Fabrication of G/GS pressure sensor. (a$ - $c) Fabrication of G/GS films of different layers. (d) PDMS substrate with microstructures on surface that replicates the surface structure of Epipremnum aureum leaf coated with G/GS films. (e) Photograph of a G/GS pressure sensor assembled using m-PDMS and G/GS films. (f) Schematic of the structure deformation when pressure is loading/unloading.

    Figure  2.  Structure of the G/GS films. (a$ - $d) Optical micrographs of 1-, 2-, 3-, and 4-layer G/GS films. (e) The fraction of the area covered by graphene scrolls in hybrid films with different number of stacked layers. (f) Optical micrographs of 4-layer PG films.

    Figure  3.  Electromechanical properties of the G/GS pressure sensor. (a) Sensitivity of G/GS pressure sensors with different numbers of stacked G/GS layers. (b) Sensitivity of the pressure sensor in the presence of graphene scrolls compared to that of pure graphene film. (c) Response of the pressure sensor under different stress conditions. (d) Linear relationship between $ \Delta R/R_0 $ and stress. (e) Performance of the pressure sensor during 1000 cycles under 459.1 Pa pressure. (f) Magnified image of (e). Response time of (g) 50 ms and (h) 30 ms for the 4-layer G/GS pressure sensor.

    Figure  4.  Artificial stress and bending monitoring. Scale bar of the insets is 10 cm.

    S1.  Raman spectra taken on two different areas on the hybrid films.

    S2.  SEM image of the G/GS films coated on m-PDMS.

    S3.  Response times of (a and b) 3-layer G/GS pressure sensor and (c and d) 2-layer G/GS pressure sensor.

    S1.   Summary of recently reported piezoresistive sensors from previous work.

    下载: 导出CSV
  • [1] J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, and H. Ko, ACS Nano 8, 4689 (2014). doi:  10.1021/nn500441k
    [2] S. H. Shin, S. Ji, S. Choi, K. H. Pyo, B. Wan An, J. Park, J. Kim, J. Y. Kim, and J. U. Park, Nat. Commun. 8, 14950 (2017). doi:  10.1038/ncomms14950
    [3] K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, Nat. Mater. 9, 821 (2010). doi:  10.1038/nmat2835
    [4] Y. Zhu, J. Li, H. Cai, Y. Wu, H. Ding, N. Pan, and X. Wang, Sensor. Actuat. B 255, 1262 (2018). doi:  10.1016/j.snb.2017.08.116
    [5] C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren, and Y. Zhang, Adv. Mater. 28, 6640 (2016). doi:  10.1002/adma.201601572
    [6] Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, ACS Nano 12, 2346 (2018). doi:  10.1021/acsnano.7b07613
    [7] H. Chen, Z. Su, Y. Song, X. Cheng, X. Chen, B. Meng, Z. Song, D. Chen, and H. Zhang, Adv. Funct. Mater. 27, (2017).
    [8] L. Q. Tao, K. N. Zhang, H. Tian, Y. Liu, D. Y. Wang, Y. Q. Chen, Y. Yang, and T. L. Ren, ACS Nano 11, 8790 (2017). doi:  10.1021/acsnano.7b02826
    [9] K. Xia, C. Wang, M. Jian, Q. Wang, and Y. Zhang, Nano Res. 11, 1124 (2017).
    [10] B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, and X. Chen, Small 10, 3625 (2014). doi:  10.1002/smll.201401207
    [11] L. Zhang, G. Hou, Z. Wu, and V. Shanov, Nano LIFE 6, 1642005 (2016). doi:  10.1142/S1793984416420058
    [12] Y. Hou, D. Wang, X. M. Zhang, H. Zhao, J. W. Zha, and Z. M. Dang, J. Mater. Chem. C 1, 515 (2013).
    [13] A. Rinaldi, A. Tamburrano, M. Fortunato, and M. S. Sarto, Sensors 16, (2016).
    [14] T. Q. Trung, S. Ramasundaram, B. U. H Wang, and N. E. Lee, Adv. Mater. 28, 502 (2016). doi:  10.1002/adma.201504441
    [15] A. S. Shaplov, D. O. Ponkratov, P. H. Aubert, E. I. Lozinskaya, C. Plesse, F. Vidal, and Y. S. Vygodskii, Chem. Commun. 50, 3191 (2014). doi:  10.1039/C3CC49876J
    [16] J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T. S. Kim, D. Lee, and S. H. Ko, Adv. Funct. Mater. 23, 4171 (2013). doi:  10.1002/adfm.201203802
    [17] A. V. Shirinov and W. K. Schomburg, Sensor. Actuat. A 142, 48 (2008). doi:  10.1016/j.sna.2007.04.002
    [18] C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. S. Kim, Y. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. Huang, and J. A. Rogers, Nat. Commun. 5, 4496 (2014). doi:  10.1038/ncomms5496
    [19] D. Mandal, S. Yoon, and K. J. Kim, Macromol. Rapid. Commun. 32, 831 (2011). doi:  10.1002/marc.201100040
    [20] L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, and Z. Bao, Nat. Commun. 5, 3002 (2014). doi:  10.1038/ncomms4002
    [21] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, Nat. Commun. 5, 3132 (2014). doi:  10.1038/ncomms4132
    [22] C. Pang, G. Y. Lee, T. i. Kim, S. M. Kim, H. N. Kim, S. H. Ahn, and K. Y. Suh, Nat. Mater. 11, 795 (2012). doi:  10.1038/nmat3380
    [23] C. H. Mastrangelo, Z. Xia, and W. C. Tang, J. Microelectromech. S 5, 98 (1996). doi:  10.1109/84.506197
    [24] S. Jung, J. Lee, T. Hyeon, M. Lee, and D. H. Kim, Adv. Mater. 26, 6329 (2014). doi:  10.1002/adma.201402439
    [25] D. J. Cohen, D. Mitra, K. Peterson, and M. M. Maharbiz, Nano Lett. 12, 1821 (2012). doi:  10.1021/nl204052z
    [26] H. B. Yao, J. Ge, C. F. Wang, X. Wang, W. Hu, Z. J. Zheng, Y. Ni, and S. H. Yu, Adv. Mater. 25, 6692 (2013). doi:  10.1002/adma.201303041
    [27] M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, and R. H. Baughman, Adv. Mater. 22, 2663 (2010). doi:  10.1002/adma.200904270
    [28] J. Kuang, Z. Dai, L. Liu, Z. Yang, M. Jin, and Z. Zhang, Nanoscale 7, 9252 (2015). doi:  10.1039/C5NR00841G
    [29] J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, Sci. Adv. 1, e1500661 (2015). doi:  10.1126/sciadv.1500661
    [30] K. Y. Lee, H. J. Yoon, T. Jiang, X. Wen, W. Seung, S. W. Kim, and Z. L. Wang, Adv. Energy Mater. 6, 1502566 (2016). doi:  10.1002/aenm.201502566
    [31] X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, Adv. Mater. 26, 1336 (2014). doi:  10.1002/adma.201304248
    [32] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nat. Mater. 9, 859 (2010). doi:  10.1038/nmat2834
    [33] C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B. Tok, and Z. Bao, Adv. Mater. 27, 634 (2015). doi:  10.1002/adma.201403807
    [34] B. Su, S. Gong, Z. Ma, L. W. Yap, and W. Cheng, Small 11, 1886 (2015). doi:  10.1002/smll.201403036
    [35] Y. Lin, X. Dong, S. Liu, S. Chen, Y. Wei, and L. Liu, ACS Appl. Mater. Inter. 8, 24143 (2016). doi:  10.1021/acsami.6b08587
    [36] Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, F. Xu, J. Li, Y. Yuan, X. He, and Y. Li, ACS Nano 9, 8933 (2015). doi:  10.1021/acsnano.5b02781
    [37] Y. Si, X. Wang, C. Yan, L. Yang, J. Yu, and B. Ding, Adv. Mater. 28, 9512 (2016). doi:  10.1002/adma.201603143
    [38] S. Chun, H. Jung, Y. Choi, G. Bae, J. P. Kil, and W. Park, Carbon 94, 982 (2015). doi:  10.1016/j.carbon.2015.07.088
    [39] G. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung, and K. Cho, Adv. Mater. 28, 5300 (2016). doi:  10.1002/adma.201600408
    [40] L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, and Z. L. Wang, ACS Nano 7, 8266 (2013). doi:  10.1021/nn4037514
    [41] L. Z. Sheng, Y. Liang, L. L. Jiang, Q. Wang, T. Wei, L. T. Qu, and Z. J. Fan, Adv. Funct. Mater. 25, 6545 (2015). doi:  10.1002/adfm.201502960
    [42] M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, and Y. Zhang, Adv. Funct. Mater. 27, 1606066 (2017). doi:  10.1002/adfm.201606066
    [43] W. He, G. Li, and S. Zhang, ACS Nano 9, 4244 (2015). doi:  10.1021/acsnano.5b00626
    [44] S. Chun, Y. Kim, H. S. Oh, G. Bae, and W. Park, Nanoscale 7, 11652 (2015). doi:  10.1039/C5NR00076A
    [45] N. Liu, A. Chortos, T. Lei, L. Jin, T. R. Kim, W. G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, R. Sinclair, and Z. Bao, Sci. Adv. 3, (2017).
    [46] N. Lu, C. Lu, S. Yang, and J. Rogers, Adv. Funct. Mater. 22, 4044 (2012). doi:  10.1002/adfm.201200498
    [47] Y. Wei, S. Chen, X. Yuan, P. Wang, and L. Liu, Adv. Funct. Mater. 26, 5078 (2016). doi:  10.1002/adfm.201600580
    [48] Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, ACS Nano 5, 3645 (2011). doi:  10.1021/nn103523t
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-30
  • 录用日期:  2019-10-23
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回