Effect of arbuscular mycorrhizal fungi and rhizobium inoculation on soil fungal community structure and function in the rhizosphere of Medicago sativa
-
摘要:
在我国,优良豆科牧草紫花苜蓿(Medicago sativa)一直处于供不应求的状态,接种AM (arbuscular mycorrhizae)真菌和根瘤菌可以促进土壤氮、磷循环以及提高植株抗逆性,从而提高苜蓿产量。为探究接种AM真菌和根瘤菌对苜蓿根际真菌群落结构和功能的影响,采集苜蓿6个不同处理组(不接种、单接种摩西球囊霉、单接种根内球囊霉、单接种根瘤菌、双接种根内球囊霉和根瘤菌、双接种摩西球囊霉和根瘤菌)根际和非根际土壤样品,基于真菌ITS区高通量测序技术,分析比较不同接种处理组苜蓿根际、非根际土壤中真菌多样性和群落分布的规律,并采用FUNGuild软件对不同处理组间菌群功能进行预测。结果表明:6个不同处理组中,在门水平上土壤真菌群落主要由子囊菌门、担子菌门构成,且以子囊菌门为主(19.29%~61.18%)。在属水平上发现与不接种相比,接种AM真菌和根瘤菌显著提高了有益菌的丰度,如单接种摩西球囊霉GMR处理组中优势属为支顶孢属(Acremonium)、单接种根瘤菌KR处理组中优势属为葡萄穗霉属(Stachybotrys)和毛束霉属(Trichurus),双接种根内球囊霉和根瘤菌GIKR处理组中优势属为木霉属(Trichoderma),双接种摩西球囊霉和根瘤菌GMKR处理组中优势属为曲霉菌属(Aspergillus)。与不接种相比,接种AM真菌和根瘤菌提高了真菌群落的操作分类单元数(OTUs)、Shannon-Wiener指数、菌种丰富度Chao1指数。不同接种处理间主要以腐生营养型为主,接种AM真菌和根瘤菌均会增加共生营养型的相对丰度,降低病原营养型的相对丰度。综上所述,接种AM真菌和根瘤菌后,有利于土壤氮磷的循环,增加了土壤真菌群落的丰富度与多样性,在致病菌存在的同时增加了生防菌,以及与固氮、溶磷有关菌的丰度,增加了共生营养型的相对丰度,降低了病原营养型的相对丰度,故接种 根瘤菌丰富了真菌群落组成,优化了原有的微生物生态环境,从而有利于苜蓿植株品质及产量的提高。
Abstract:In China, the yield of Medicago sativa, an excellent legume forage, has been in short supply. Inoculation with AM fungi and rhizobium can promote soil nitrogen and phosphorus cycling and increase stress resistance to increase M. sativa yield. In order to investigate the effects of AM fungi and Rhizobium on the structure and function of rhizosphere fungal community, in this experiment, the rhizosphere and non-rhizosphere soil samples of six different treatment groups (Without inoculation,only inoculation with Glomus mosseae, only inoculation with Glomus intraradices, only inoculation Sinorhizobium meliloti, double inoculation with Glomus intraradices and Sinorhizobium meliloti, double inoculation with Glomus mosseae and Sinorhizobium meliloti) were collected, based on the high-throughput sequencing technology of the fungal ITS region, the laws of fungal diversity and community distribution in the rhizosphere and non-rhizosphere soils of M. sativa in different inoculation treatment groups were analyzed and compared, the FUNGuild software was used to predict the flora function between different treatment groups. The results show, in 6 different treatment groups, the soil fungal community was mainly composed of Ascomycota and Basidiomycota, with Ascomycota as the main species (19.29%~61.18%). It was found at the genus level that inoculation with AM fungi and rhizobium significantly increased the abundance of beneficial fungi compared with no inoculation. For example, the dominant genus in the inoculation with Glomus mosseae GMR treatment group was Acremonium, and the dominant genus in the only inoculation Sinorhizobium meliloti KR treatment group were Stachybotrys and Trichurus, the dominant genus in the double inoculation with Glomus intraradices and Sinorhizobium meliloti GIKR treatment group was Trichoderma, and the dominant genus in the double inoculation with Glomus mosseae and Sinorhizobium meliloti GMKR treatment group was Aspergillus. And inoculation with AM fungi and rhizobium significantly increased the OTUs, Shannon index, and Chao1 index of the fungal community. Among different inoculation treatments, saprophytic types were dominant type. Inoculation of AM fungi and rhizobia increased the relative abundance of symbiotic types and decreased the relative abundance of pathogenic types. To sum up, the inoculation of AM fungi and rhizobia is conducive to the circulation of soil nitrogen and phosphorus, increases the richness and diversity of soil fungal community, increases the abundance of biocontrol bacteria, nitrogen fixation and phosphorus solubilizing bacteria, increases the relative abundance of symbiotic type, and reduces the relative abundance of pathogenic type. Therefore, inoculation with AM fungi and rhizobium enriched fungal community composition and optimized the original microbial ecological environment, which was beneficial to the improvement of M. sativa quality and yield.
-
图 1 不同接种处理下苜蓿土壤根际真菌门水平的相对丰度弦图
a, Ascomycota 子囊菌门; b, Mortierellomycota 被孢霉门; c, Basidiomycota 担子菌门; d, Mucoromycota 毛霉菌门; e, Glomeromycota 球囊菌门; f, Aphelidiomycota; g, Chytridiomycota 壶菌门; h, Rozellomycota 罗兹菌门; i, Calcarisporiellomycota; j, Blastocladiomycota 芽枝霉门; k, others其他.
Figure 1. Relative abundance chord diagram of rhizosphere fungal division levels of alfalfa under different inoculation treatments
表 1 苜蓿各试验组样本土壤的理化因子
Table 1. Value for soil physical and chemical factors of each testing group sample
样品分组
Group namepH 有机质含量
OM content/
(g·kg−1)全氮含量
TN content/
(g·kg−1)全磷含量
TP content/
(g·kg−1)有效磷含量
AP content/
(mg·kg−1)碱解氮含量
AN content/
(g·kg−1)过氧化氢酶活性
CAT activity/
(U·mL−1)中性磷酸酶活性NP activity/
(U·L−1)CKTR 8.19 ± 0.00abcd 29.10 ± 0.39de 0.73 ± 0.14a 1.47 ± 0.06a 31.85 ± 1.35ab 57.93 ± 2.33cd 0.38 ± 0.06ab 0.45 ± 0.02f CKTB 8.12 ± 0.01d 47.35 ± 0.40a 0.67 ± 0.03bc 1.34 ± 0.02bc 23.80 ± 2.57cd 63.67 ± 3.24bc 0.34 ± 0.04cd 0.25 ± 0.05i GIR 8.28 ± 0.01a 22.10 ± 0.25g 0.57 ± 0.05de 1.15 ± 0.09de 18.33 ± 3.66e 59.00 ± 3.16cd 0.33 ± 0.03cd 0.47 ± 0.01e GIB 8.22 ± 0.01abc 20.93 ± 0.45g 0.51 ± 0.32f 1.03 ± 0.02f 27.82 ± 5.89bc 58.83 ± 2.56cd 0.22 ± 0.01f 0.24 ± 0.03g GMR 8.22 ± 0.00abc 32.73 ± 0.36bc 0.52 ± 0.24f 1.05 ± 0.08f 22.64 ± 3.67de 58.50 ± 2.79cd 0.37 ± 0.02b 0.55 ± 0.01c GMB 8.26 ± 0.00ab 21.76 ± 0.55g 0.56 ± 0.09ef 1.12 ± 0.05ef 23.65 ± 4.44cd 73.50 ± 3.87a 0.27 ± 0.02e 0.22 ± 0.02k KR 8.16 ± 0.01bcd 35.96 ± 0.53b 0.59 ± 0.06de 1.19 ± 0.03de 32.00 ± 5.35ab 66.00 ± 5.21b 0.40 ± 0.03a 0.58 ± 0.03b KB 8.17 ± 0.00bcd 25.94 ± 0.46ef 0.71 ± 0.01ab 1.41 ± 0.04ab 31.71 ± 6.65ab 56.00 ± 4.23d 0.32 ± 0.01d 0.40 ± 0.01g GIKR 8.14 ± 0.00cd 26.77 ± 0.37ef 0.70 ± 0.06ab 1.39 ± 0.08ab 31.13 ± 4.34ab 58.17 ± 4.67cd 0.34 ± 0.04cd 0.60 ± 0.02ab GIKB 8.17 ± 0.01bcd 23.38 ± 0.42fg 0.72 ± 0.01a 1.44 ± 0.07a 35.74 ± 5.42a 65.33 ± 5.33b 0.34 ± 0.01c 0.31 ± 0.04h GMKR 8.25 ± 0.01ab 31.76 ± 0.40cd 0.66 ± 0.06bc 1.32 ± 0.09bc 21.21 ± 6.67de 68.33 ± 3.47ab 0.34 ± 0.03cd 0.60 ± 0.01a GMKB 8.23 ± 0.00abc 25.70 ± 0.44ef 0.62 ± 0.01cd 1.24 ± 0.07cd 21.35 ± 3.84de 68.30 ± 3.18bc 0.34 ± 0.01cd 0.50 ± 0.03d CKTR:不接种处理组根际土壤;CKTB:不接种处理组非根际土壤;GIR:单接种根内球囊霉处理组根际土壤;GIB:单接种根内球囊霉处理组非根际土壤;GMR:单接种摩西球囊霉处理组根际土壤;GMB:单接种摩西球囊霉处理组非根际土壤;KR:单接种根瘤菌处理组根际土壤;KB:单接种根瘤菌处理组非根际土壤;GIKR:双接种根内球囊霉和根瘤菌处理组根际土壤;GIKB:双接种根内球囊霉和根瘤菌处理组非根际土壤;GMKR:双接种摩西球囊霉和根瘤菌处理组根际土壤;GMKB:双接种摩西球囊霉和根瘤菌处理组非根际土壤;下同。OM:有机质;TN:全氮;TP:全磷;AP:有效磷;AN:碱解氮;CAT:过氧化氢酶;NP:中性磷酸酶;同列不同小写字母表示不同样品分组之间差异显著(P < 0.05);下同。
CKTR: Rhizosphere soil of non-inoculation treatment group; CKTB: Non-rhizosphere soil in non-inoculation treatment group; GIR: Rhizosphere soil of only inoculation withGlomus intraradices treatment group; GIB: Non-rhizosphere soil of only inoculation withGlomus intraradices treatment group; GMR: Rhizosphere soil of only inoculationGlomus mosseae treatment group; GMB: Non-rhizosphere soil of only inoculation withGlomus mosseaetreatment group; KR: Rhizosphere soil of only inoculation Sinorhizobium melilotitreatment group; KB: Non-rhizosphere soil of only inoculation withSinorhizobium melilotitreatment group; GIKR: Rhizosphere soil of double inoculation with Glomus intraradicesand Sinorhizobium meliloti treatment group; GIKB: Non-rhizosphere soil of double inoculation with Glomus intraradicesand Sinorhizobium meliloti treatment group; GMKR: Rhizosphere soil of double inoculation with Glomus mosseaeand Sinorhizobium meliloti treatment group; GMKB: Non-rhizosphere soil of double inoculation with Glomus mosseaeand Sinorhizobium melilotitreatment group; this is applicable for the following figures and tables as well. OM: organic matter; TN: total nitrogen; TP: total phosphorus; AP: available phosphorus; AN: alkali nitrogen; CAT: Catalase; NP: Neutral phosphatase. Different lowercase letters within the same column indicate significant differences between different sample groups at the 0.05 level; this is applicable for the following figures as well.表 2 不同接种处理组苜蓿根际、非根际土壤真菌丰度和多样性指数
Table 2. Fungal abundance and diversity index of alfalfa rhizosphere and non-rhizosphere soil
样品分组
Group nameOTUs数
OTUsShannon-Wiener指数
Shannon-Wiener indexChao1 指数
Chao1 index覆盖率
Coverage/%CKTR 908.01 ± 55.91c 5.76 ± 0.09a 1101.42 ± 16.78c 0.993 0 ± 0.000 1a CKTB 991.11 ± 53.21c 6.51 ± 0.33a 1212.90 ± 16.45bc 0.991 0 ± 0.000 3a GIR 1101.08 ± 78.32bc 6.31 ± 0.12a 1376.79 ± 12.34bc 0.991 0 ± 0.000 1a GIB 1041.35 ± 45.31c 5.95 ± 0.16a 1368.43 ± 14.23bc 0.990 0 ± 0.000 1a GMR 1077.24 ± 65.16c 6.35 ± 0.19a 1361.18 ± 15.32bc 0.990 0 ± 0.000 2a GMB 2633.17 ± 123.51a 7.27 ± 0.35a 4967.61 ± 33.62a 0.996 0 ± 0.000 1a KR 2083.26 ± 136.80ab 7.57 ± 0.21a 3272.07 ± 16.34ab 0.982 0 ± 0.000 3a KB 1025.35 ± 64.78c 5.76 ± 0.16a 1291.18 ± 18.95bc 0.991 0 ± 0.000 1a GIKR 1254.26 ± 63.21bc 6.70 ± 0.31a 1613.12 ± 23.16bc 0.989 0 ± 0.000 3a GIKB 1090.32 ± 79.32bc 6.67 ± 0.15a 1420.70 ± 25.14bc 0.990 0 ± 0.000 1a GMKB 1070.17 ± 78.32bc 6.43 ± 0.18a 1346.61 ± 31.21bc 0.990 0 ± 0.000 1a GMKR 1099.11 ± 64.21bc 6.31 ± 0.32a 1409.56 ± 22.78bc 0.990 0 ± 0.000 2a -
[1] 刘源, 张院萍. 全国苜蓿产业发展规划(2016 – 2020). 中国畜牧业, 2017(11): 32. doi: 10.3969/j.issn.2095-2473.2017.11.012LIU Y, ZHANG Y P. National alfalfa industry development plan (2016 – 2020). China Animal Husbandry, 2017(11): 32. doi: 10.3969/j.issn.2095-2473.2017.11.012 [2] SMITH S E, READ D J. Mycorrhizal symbiosis. Quarterly Review of Biology, 2008, 3(3): 273-281. [3] SMITH F A, GRACE E J, SMITH S E. More than a carbon economy: Nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist, 2009, 182(2): 347-358. doi: 10.1111/j.1469-8137.2008.02753.x [4] CHAKRABORTY U, PURKAYASTHA R P. Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Canadian Journal of Microbiology, 1984, 30(3): 285-289. doi: 10.1139/m84-043 [5] 庄倩, 赵晓娟, 宋福强. 紫穗槐丛枝菌根(AM)根系分泌物诱导根瘤菌结瘤因子及作用研究. 西北林学院学报, 2018, 33(3): 164-168. doi: 10.3969/j.issn.1001-7461.2018.03.25ZHUAN Q, ZHAO X J, SONG F Q. Amorpha fruticose arbuscular mycorrhizal (AM) root exudates induced nodulation factors of rhizobia and their interactions. Journal of Northwest Forestry University, 2018, 33(3): 164-168. doi: 10.3969/j.issn.1001-7461.2018.03.25 [6] 高萍, 李芳, 郭艳娥, 段廷玉. 丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展. 草地学报, 2017, 25(2): 236-242. doi: 10.11733/j.issn.1007-0435.2017.02.003GAO P, LI F, GUO Y E, DUAN T Y. Advances in AM fungi and rhizobium to control plant fungal disease. Acta Agrestia Sinica, 2017, 25(2): 236-242. doi: 10.11733/j.issn.1007-0435.2017.02.003 [7] 王晓瑜, 丁婷婷, 李彦忠, 段廷玉. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响. 草业学报, 2019, 28(8): 139-149. doi: 10.11686/cyxb2018453WANG X Y, DING T T, LI Y Z, DUAN T Y. Effects of an arbuscular mycorrhizal fungus and a rhizobium species on Medicago sativa wilt and Fusarium oxysporum root rot . Acta Prataculturae Sinica, 2019, 28(8): 139-149. doi: 10.11686/cyxb2018453 [8] 王妍. 不同秸秆还田方式对砂姜黑土真菌群落的影响. 合肥: 安徽农业大学硕士学位论文, 2016.WANG Y. The effect of different straw returning methods on the fungal community of Shajiang black soil. Master Thesis. Hefei: Anhui Agricultural University, 2016. [9] 徐丽慧, 曾蓉, 高士刚, 戴富明. 土壤真菌多样性对土传病害影响的研究进展. 上海农业学报, 2017, 33(3): 161-165. doi: 10.15955/j.issn1000-3924.2017.03.30XU L H, ZENG R, GAO S G, DAI F M. Review on the effect of soil fungal communities on soil-borne diseases. Acta Agriculturae Shanghai, 2017, 33(3): 161-165. doi: 10.15955/j.issn1000-3924.2017.03.30 [10] 卢慧, 赵珩, 盛玉钰, 王秀磊, 李迪强, 张于光. 基于高通量测序的两种高寒草甸土壤原核生物群落特征研究. 生态学报, 2018, 38(22): 8080-8087. doi: 10.5846/stxb201801050034LU H, ZHAO Y, SHENG Y Y, WANG X L, LI D Q, ZHANG Y G. Soil prokaryotic community characteristics in two alpine meadow types based on high-throughput sequencing techniques. Acta Ecologica Sinica, 2018, 38(22): 8080-8087. doi: 10.5846/stxb201801050034 [11] 刘开辉, 丁小维, 张波, 唐小飞, 肖敏, 鲜文东, 李文均. 高通量测序分析云南腾冲热海热泉真菌多样性. 微生物学报, 2017(9): 10-18.LIU K H, DING X W, ZHANG B, TANG X F, XIAO M, XIAN W D, LI W J. High-throughput sequencing analysis of fungal diversity in Tengchong Rehai Hot Spring, Yunnan. Acta Microbiologica Sinica, 2017(9): 10-18. [12] 李越鲲, 孙燕飞, 雷勇辉, 周旋, 尹跃, 秦垦. 枸杞根际土壤真菌群落多样性的高通量测序. 微生物学报, 2017(7): 105-115.LI Y K, SUN Y F, LEI Y H, ZHOU X, YIN Y, QIN K. High-throughput sequencing of the diversity of medlar rhizosphere soil fungal communities. Acta Microbiologica Sinica, 2017(7): 105-115. [13] 蒙程, 陆妮, 柴琦. 不同pH下接种AM真菌和根瘤菌对紫花苜蓿生长的影响. 草业科学, 2017, 34(2): 352-360. doi: 10.11829/j.issn.1001-0629.2016-0075MENG C, LU N, CHAI Q. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa in acidic soil. Pratacultural Science, 2017, 34(2): 352-360. doi: 10.11829/j.issn.1001-0629.2016-0075 [14] 杨美玲, 张霞, 王绍明, 刘鸯, 张丽霞, 赵祥. 基于高通量测序的裕民红花根际土壤细菌群落特征分析. 微生物学通报, 2018, 45(11): 2429-2438. doi: 10.13344/j.microbiol.china.171038YANG M L, ZHANG X, WANG S M, LIU Y, ZHANG L X, ZHAO X. High throughput sequencing analysis of bacterial communities in Yumin safflower. Microbiology China, 2018, 45(11): 2429-2438. doi: 10.13344/j.microbiol.china.171038 [15] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 1-114.BAO S D. Analysis of Soil Agrochemical. Beijing: China Agriculture Press, 2000: 1-114. [16] 裘浪, 毕银丽, 江彬, 王志刚. 覆膜与接种AM真菌对半干旱区玉米根际土壤理化性质的影响. 菌物学报, 2017, 36(7): 904-913. doi: 10.13346/j.mycosystema.170029QIU L, BI Y L, JIANG B, WANG Z G. Effects of plastic film mulching and inoculation with AM fungi on soil physicochemical properties of maize rhizosphere in semiarid areas. Mycosystema, 2017, 36(7): 904-913. doi: 10.13346/j.mycosystema.170029 [17] 刘旭艳, 石凤翎, 刘昊, 王瑞峰, 石凤玲. 接种根瘤菌对苜蓿生长及土壤养分的影响. 中国草地学报, 2016, 38(6): 45-52. doi: 10.16742/j.zgcdxb.2016-06-07LIU X Y, SHI F L, LIU H, WANG R F, SHI F L. Effects of rhizobium on the growth of alfalfa and the soil nutrient content. Chinese Journal of Grassland, 2016, 38(6): 45-52. doi: 10.16742/j.zgcdxb.2016-06-07 [18] 杨久扬. AM真菌和改良剂对小果白刺生长和沙化土壤改良效应的影响. 呼和浩特: 内蒙古大学硕士学位论文, 2019.YANG J Y. Effects of AM fungi and improvers on the growth of white thorns and desertification soil. Master Thesis. Hohhot: Inner Mongolia University, 2019. [19] 马玉一. 红三叶接种丛枝菌根真菌和根瘤菌对根系构型和植物及土壤氮、磷的影响.晋中: 山西农业大学硕士学位论文, 2017.MA Y Y. Effects of arbuscular mycorrhizal fungi and rhizobium on root structure and plant and soil nitrogen and phosphorus in red clover. Master Thesis. Jinzhong: Shanxi Agricultural University, 2017. [20] 王莉琴, 牛琳琳, 刁莉华, 曾明, 雷世梅, 伍加勇. 不同丛枝菌根真菌对梨园土壤微生物和土壤养分的影响. 西南师范大学学报(自然科学版), 2013, 38(5): 103-108. doi: 10.3969/j.issn.1000-5471.2013.05.021WANG L Q, NIU L L, DIAO L H, ZENG M, LEI S M, WU J Y. Effects of different arbuscular mycorrhizal fungi in pear orchard on microorganisms and nutrients in the soil. Journal of Southwest China Normal University (Natural Science Edition), 2013, 38(5): 103-108. doi: 10.3969/j.issn.1000-5471.2013.05.021 [21] 李俊乐. 土壤生态系统微生物多样性-稳定性关系的思考. 科技风, 2017(12): 237. doi: 10.19392/j.cnki.1671-7341.201712208LI J L. Thoughts on the relationship between microbial diversity and stability in soil ecosystem. Science and Technology, 2017(12): 237. doi: 10.19392/j.cnki.1671-7341.201712208 [22] 李明松. 不同施氮水平下玉米根际微生物种群结构的变化. 长春: 吉林农业大学硕士学位论文, 2018.LI M S. Changes of microbial population structure in corn rhizosphere under different nitrogen application levels. Master Thesis. Changchun: Jilin Agricultural University, 2018. [23] 张超, 朱三荣, 田峰, 戴林建, 陈武. 不同绿肥对湘西烟田土壤细菌群落结构与多样性的影响. 贵州农业科学, 2016, 44(5): 43-46. doi: 10.3969/j.issn.1001-3601.2016.05.011ZHANG C, ZHU S R, TIAN F, DAI L J, CHEN W. Effects of different green manure on bacterial community structure and diversity in tobacco-planting field in Xiangxi. Guizhou Agricultural Sciences, 2016, 44(5): 43-46. doi: 10.3969/j.issn.1001-3601.2016.05.011 [24] 杨潇湘, 张蕾, 黄小琴, 伍文宪, 周西全, 杜磊, 黎怀忠, 刘勇. 基于高通量测序分析大豆和油菜根际微生物群落结构的差异. 应用生态学报, 2019, 30(7): 2345-2351. doi: 10.13287/j.1001-9332.201907.028YANG X X, ZHANG L, HUANG X Q, WU W X, ZHOU X Q, DU L, LI H Z, LIU Y. Difference of the microbial community structure in the rhizosphere of soybean and oilseed rape based on high-throughput pyrosequencing analysis. Chinese Journal of Applied Ecology, 2019, 30(7): 2345-2351. doi: 10.13287/j.1001-9332.201907.028 [25] 钱雅丽, 王先之, 来兴发, 李峻成, 沈禹颖. 多年生牧草种植对苹果园土壤真菌群落特征的影响. 草业学报, 2019, 28(11): 124-132. doi: 10.11686/cyxb2018824QIAN Y L, WANG X Z, LAI X F, LI J C, SHEN Y Y. Effects of perennial forage on characteristics of the soil fungal community in an apple orchard. Acta Prataculturae Sinica, 2019, 28(11): 124-132. doi: 10.11686/cyxb2018824 [26] 潘汝谦, 盖云鹏, 邓铭光, 陈兴龙, 徐大高, 纪春艳. 一种值得关注的花生新病害: 花生新赤壳菌基腐病. 植物保护, 2012, 38(3): 180-183. doi: 10.3969/j.issn.0529-1542.2012.03.042PAN R Q, GAI Y P, DENG M G, CHEN X L, XU D G, JI C Y. A notable new disease: Neocosmospora foot rot of peanut. Plant Protection, 2012, 38(3): 180-183. doi: 10.3969/j.issn.0529-1542.2012.03.042 [27] 崔云凤, 黄云, 蒋伶活. 农业生产上几种重要的赤霉属真菌研究进展. 中国农学通报, 2007(7): 441-446. doi: 10.3969/j.issn.1000-6850.2007.07.101CUI Y F, HUANG Y, JIANG L H. Research progress on gibberella species of agricultural importance. Chinese Agricultural Science Bulletin, 2007(7): 441-446. doi: 10.3969/j.issn.1000-6850.2007.07.101 [28] 高芬, 吴元华. 链格孢属(Alternaria)真菌病害的生物防治研究进展. 植物保护, 2008(3): 1-6. doi: 10.3969/j.issn.0529-1542.2008.03.001GAO F, WU Y H. Progresses in the biocontrol of plant diseases caused by Alternaria . Plant Protection, 2008(3): 1-6. doi: 10.3969/j.issn.0529-1542.2008.03.001 [29] 姚秀英, 刘南南, 王桂清. 菌核生枝顶孢霉次生代谢物对桃褐斑致病菌的抑制效果. 农业科技与装备, 2019(3): 18-22.YAO X Y, LIU N N, WANG G Q. Inhibitory effect of secondary metabolites of Acremonium sclerotiorum on Alternaria alternate. Agricultural Science & Technology and Equipment, 2019(3): 18-22. [30] 徐全智, 孙牧笛, 李帆, 高媛, 顾沛雯. 宁夏枸杞内生真菌的分离及多样性分析. 北方园艺, 2017(10): 103-109. doi: 10.11937/bfyy.201710024XU Q Z, SUN M D, LI F, GAO Y, GU P W. Separation and diversity analysis of endophytic fungi from Lycium barbarum L. in Ningxia. Northern Horticulture, 2017(10): 103-109. doi: 10.11937/bfyy.201710024 [31] LARGHI E L, KAUFMANT S. Cheminform abstract: Isolation, synthesis and complement inhibiting activity of the naturally occurring K-76, its analogues and derivatives. Cheminform, 2011, 42(22): 49-102. [32] 姜午春, 解修超, 彭浩, 邓百万, 罗强, 王娇. 西洋参内生真菌分离鉴定及生防特性. 黑龙江农业科学, 2018(3): 126-129, 138. doi: 10.11942/j.issn1002-2767.2018.03.0126JIANG W C, XIE X C, PENG H, DENG B W, LUO Q, WANG J. Isolation, identification and bio-control characteristics of endophytic fungi in Panax quinque folium. Heilongjiang Agricultural Sciences, 2018(3): 126-129, 138. doi: 10.11942/j.issn1002-2767.2018.03.0126 [33] 张逸醒. 不同种植方式下当归根际土壤真菌多样性研究. 兰州: 西北师范大学硕士学位论文, 2016.ZHANG Y X. Study on the fungal diversity of Angelica rhizosphere soil under different planting methods. Master Thesis. Lanzhou: Northwest Normal University, 2016. [34] BAO Z H, MATSUSHITA Y, MORIMOTO S, HOSHINO Y T, SUZUKI C, NAGAOKA K, TAKENAKA M, MURAKAMI H, KUROYANAGI Y, URASHIMA Y, SEKIGUCHI H, KUSHIMA S. Decrease in fungal biodiversity along an available phosphorous gradient in arable andosol soils in Japan. Canadian Journal of Microbiology, 2013, 59(6): 368-373. doi: 10.1139/cjm-2012-0612 [35] 杨顺, 杨婷, 林斌, 刘杏忠, 向梅春. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价. 微生物学报, 2018, 58(2): 264-273. doi: 10.13343/j.cnki.wsxb.20170112YANG S, YANG T, LIN B, LIU X Z, XIANG M C. Isolation and evaluation of two phosphate-dissolving fungi. Acta Microbiologica Sinica, 2018, 58(2): 264-273. doi: 10.13343/j.cnki.wsxb.20170112 [36] 孙倩, 吴宏亮, 陈阜, 康建宏. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构. 微生物学通报, 2019, 46(11): 2963-2972. doi: 10.13344/j.microbiol.china.181049SUN Q, WU H L, CHEN F, KANG J H. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia. Microbiology, 2019, 46(11): 2963-2972. doi: 10.13344/j.microbiol.china.181049 [37] ANTHONY M A, FREYS D, STINSON K A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere, 2017, 8(9): 1-12. doi: doi.org/10.1002/ecs2.1951 [38] IGIEHON N O, BABAOLA O O. Biofertilizers and sustainabl agriculture: Exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology, 2017, 101(12): 4871-4881. doi: 10.1007/s00253-017-8344-z -