留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波在飞行器等离子体鞘套中的传输特性

耿兴宁 徐德刚 李吉宁 陈锴 钟凯 姚建铨

耿兴宁, 徐德刚, 李吉宁, 陈锴, 钟凯, 姚建铨. 太赫兹波在飞行器等离子体鞘套中的传输特性[J]. 仁和测试, 2020, 32(3): 033101. doi: 10.11884/HPLPB202032.190291
引用本文: 耿兴宁, 徐德刚, 李吉宁, 陈锴, 钟凯, 姚建铨. 太赫兹波在飞行器等离子体鞘套中的传输特性[J]. 仁和测试, 2020, 32(3): 033101. doi: 10.11884/HPLPB202032.190291
Xingning Geng, Degang Xu, Ji’ning Li, Kai Chen, Kai Zhong, Jianquan Yao. Propagation characteristics of terahertz wave in plasma sheath around air vehicle[J]. Rhhz Test, 2020, 32(3): 033101. doi: 10.11884/HPLPB202032.190291
Citation: Xingning Geng, Degang Xu, Ji’ning Li, Kai Chen, Kai Zhong, Jianquan Yao. Propagation characteristics of terahertz wave in plasma sheath around air vehicle[J]. Rhhz Test, 2020, 32(3): 033101. doi: 10.11884/HPLPB202032.190291

太赫兹波在飞行器等离子体鞘套中的传输特性

doi: 10.11884/HPLPB202032.190291
基金项目: 国家自然科学基金项目(61705162);装备预研基金重点项目(6140415010202)
详细信息
    作者简介:

    耿兴宁(1995—),男,硕士研究生,主要从事太赫兹波与等离子体方向研究;gengxingning@tju.edu.cn

    通讯作者:

    李吉宁(1984—),男,博士,讲师,主要从事太赫兹技术与太赫兹器件方向研究; jiningli@tju.edu.cn

  • 中图分类号: TN29

Propagation characteristics of terahertz wave in plasma sheath around air vehicle

  • 摘要: 针对临近空间飞行器的黑障问题,根据模拟的RAM C-III飞行器周围的流场分布结果,计算了等离子体电子密度和碰撞频率,并根据其分布建立了非均匀的等离子体模型。在此基础上,利用散射矩阵方法分析了太赫兹波在等离子体中的传输特性随着等离子体密度、等离子体厚度、等离子体碰撞频率的变化以及外加磁场对传输特性的影响。结果表明,太赫兹波的传输损耗随着等离子体电子密度和等离子体厚度的增加而增加,而碰撞频率的增加会使得透射率先减小后增加。在外加磁场的作用下,左旋太赫兹波的传输特性会得到改善;而对于右旋太赫兹波,磁场的施加会引入吸收峰,并且随着磁感应强度的增加向高频方向移动。
  • 图  1  RAM C-III飞行器模型

    Figure  1.  Vehicle model of RAM C-III

    图  2  RAM C-III飞行器流场仿真

    Figure  2.  Flow field distribution simulation of RAM C-III vehicle model

    图  3  等离子体电子密度和碰撞频率分布

    Figure  3.  Plasma electron density and collision frequency distribution

    图  4  太赫兹波在等离子体鞘套中传输的分层模型

    Figure  4.  Stratification of terahertz wave propagation in plasma sheath

    图  5  不同等离子体电子密度下太赫兹波在等离子体中的传输特性

    Figure  5.  Propagation characteristics of terahertz wave in plasma with different plasma electron density

    图  6  不同等离子体碰撞频率下太赫兹波在等离子体中的传输特性

    Figure  6.  Propagation characteristics of terahertz wave in plasma with different plasma collision frequency

    图  7  不同等离子体厚度下太赫兹波在等离子体中的传输特性

    Figure  7.  Propagation characteristics of terahertz wave in plasma with different plasma thickness

    图  8  外加磁场对于左旋太赫兹波传输特性的影响

    Figure  8.  Effect of external magnetic field on propagation characteristics of left-handed polarized terahertz wave

    图  9  外加磁场对于右旋太赫兹波传输特性的影响

    Figure  9.  Effect of external magnetic field on propagation characteristics of right-handed polarized terahertz wave

  • [1] Hartunian R A, Stewart G E, Fergason S D, et al. Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles[R]. Aerospace Corporation, 2007.
    [2] Gillman E D, Foster J E. Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation[R]. NASA TM-2010-216220, 2010.
    [3] 刘丰, 朱忠博, 崔万照, 等. 太赫兹技术在空间领域应用的探讨[J]. 太赫兹科学与电子信息学报, 2013, 11(6):857-866. (Liu Feng, Zhu Zhongbo, Cui Wanzhao, et al. Application of terahertz techniques in space science[J]. Journal of Terahertz Science & Electronic Information Technology, 2013, 11(6): 857-866
    [4] 申金娥, 荣健, 刘文鑫. 太赫兹技术在通信方面的研究进展[J]. 红外与激光工程, 2006, 35(3):342-347. (Shen Jin′e, Rong Jian, Liu Wenxin. Progress of terahertz in communication technology[J]. Infrared and Laser Engineering, 2006, 35(3): 342-347
    [5] Bu F. Progress of terahertz spectroscopy[J]. Journal of Electronic Measurement & Instrument, 2009, 23(4): 1-6.
    [6] 常胜利, 王晓峰, 邵铮铮. 太赫兹光谱技术原理及其应用[J]. 国防科技, 2015, 36(2):17-22. (Chang Shengli, Wang Xiaofeng, Shao Zhengzheng. Terahertz spectrum and its application[J]. National Defense Science & Technology, 2015, 36(2): 17-22
    [7] 张栋文, 袁建民. 太赫兹技术概述[J]. 国防科技, 2015, 36(2):12-16. (Zhang Dongwen, Yuan Jianmin. Introduction to terahertz technology[J]. National Defense Science & Technology, 2015, 36(2): 12-16
    [8] 姚建铨, 钟凯, 徐德刚. 太赫兹空间应用研究与展望[J]. 空间电子技术, 2013, 10(2):1-16. (Yao Jianquan, Zhong Kai, Xu Degang. Study and outlook of terahertz space applications[J]. Space Electronic Technology, 2013, 10(2): 1-16
    [9] 郑灵, 赵青, 刘述章, 等. 太赫兹波在非磁化等离子体中的传输特性研究[J]. 物理学报, 2012, 61:245202. (Zheng Ling, Zhao Qing, Zhao Shuzhang, et al. Studies of terahertz wave propagation in non-magnetized plasma[J]. Acta Physica Sinica, 2012, 61: 245202
    [10] 蒋金, 陈长兴, 汪成, 等. 太赫兹波在非均匀等离子体鞘套中的传播特性[J]. 系统仿真学报, 2015, 27(12):3109-3115. (Jiang Jin, Chen Changxing, Wang Cheng, et al. Properties of terahertz wave propagation in inhomogeneous plasma sheath[J]. Journal of System Simulation, 2015, 27(12): 3109-3115
    [11] 周天翔, 陈长兴, 蒋金, 等. 太赫兹波在磁化等离子体中传输特性[J]. 强激光与粒子束, 2016, 28(7):97-101. (Zhou Tianxing, Chen Changxing, Jiangjin, et al. Terahertz wave propagation in magnetized plasma sheath[J]. High Power Laser and Particle Beams, 2016, 28(7): 97-101
    [12] 马平, 秦龙, 石安华, 等. 毫米波与太赫兹波在等离子体中传输特性[J]. 强激光与粒子束, 2013, 25(11):2965-2970. (Ma Ping, Qin Long, Shi Anhua, et al. Millimeter wave and terahertz wave transmission characteristics in plasma[J]. High Power Laser and Particle Beams, 2013, 25(11): 2965-2970
    [13] Tian Y, Han Y P, Ling Y J, et al. Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency[J]. Physics of Plasmas, 2014, 21: 023301. doi:  10.1063/1.4864072
    [14] Guo L J, Guo L X, Li J T. Propagation of terahertz electromagnetic waves in a magnetized plasma with inhomogeneous electron density and collision frequency[J]. Physics of Plasmas, 2017, 24: 022108. doi:  10.1063/1.4973654
    [15] Liu S, Guo L, Pan W, et al. PO calculation for reduction in radar cross section of hypersonic targets using RAM[J]. Physics of Plasmas, 2018, 25: 062105. doi:  10.1063/1.5030194
    [16] Gnoffo P A, Gupta R N, Shinn J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. NASA-TP-2867, 1989.
    [17] Nagaraj N, Lombard C, Bardina J. Navier-Stokes simulation of 3-D hypersonic equilibrium air flow[C]//23rd Thermophysics, Plasmadynamics and Lasers Conference. 1988: 2695.
    [18] Chen J, Yuan K, Shen L, et al. Studies of terahertz wave propagation in realistic reentry plasma sheath[J]. Progress in Electromagnetics Research, 2016, 157: 21-29. doi:  10.2528/PIER16061202
  • 加载中
图(9)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-11
  • 修回日期:  2019-11-21
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回