留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单级电磁感应线圈发射器温升研究

熊敏 张亚东 龚宇佳 张虎

熊敏, 张亚东, 龚宇佳, 张虎. 单级电磁感应线圈发射器温升研究[J]. 仁和测试, 2020, 32(3): 035003. doi: 10.11884/HPLPB202032.190300
引用本文: 熊敏, 张亚东, 龚宇佳, 张虎. 单级电磁感应线圈发射器温升研究[J]. 仁和测试, 2020, 32(3): 035003. doi: 10.11884/HPLPB202032.190300
Min Xiong, Yadong Zhang, Yujia Gong, Hu Zhang. Study on temperature rise of electromagnetic coil launcher[J]. Rhhz Test, 2020, 32(3): 035003. doi: 10.11884/HPLPB202032.190300
Citation: Min Xiong, Yadong Zhang, Yujia Gong, Hu Zhang. Study on temperature rise of electromagnetic coil launcher[J]. Rhhz Test, 2020, 32(3): 035003. doi: 10.11884/HPLPB202032.190300

单级电磁感应线圈发射器温升研究

doi: 10.11884/HPLPB202032.190300
基金项目: 国家自然科学基金项目(51977152);湖北省自然科学基金项目(2019CFB430)
详细信息
    作者简介:

    熊敏:熊 敏(1994—),男,硕士,从事电磁发射技术研究;1376758757@qq.com

  • 中图分类号: TM15

Study on temperature rise of electromagnetic coil launcher

  • 摘要: 同步感应式线圈型电磁发射器主要采用脉冲电流对线圈直接供电,其实际工作过程中电枢和线圈会产生温升,这是当前制约线圈发射器向小型化、高速发展的一个主要因素。本文通过建立电磁线圈的温升模型,对于单次触发的情况,分别利用Comsol和自编程序Coilgun进行计算,并搭建相应的试验平台进行验证。采用直接耦合方式的Comsol计算结果最为准确,也能考虑材料参数随温度的变化。仿真得到电枢的温升大约为4.2 ℃,线圈最大温升为7.7 ℃。由于热电偶温度传感器的测量延迟性与采样频率的限制,电枢温度试验曲线未能测量到仿真曲线中出现的温度最大值点,可记录到整个试验过程中温度变化曲线,其变化形势以及最终稳定的温度与仿真的基本一致,误差最大为6.1%,说明了仿真的准确性。为后续进行多级线圈连续发射奠定基础。
  • 图  1  k级同步感应线圈发射器的集总参数模型

    Figure  1.  Lumped parameter model of class k synchronous induction coil transmitter

    图  2  单级电磁感应线圈发射器模型及相应参数

    Figure  2.  single stage electromagnetic induction coil transmitter model and corresponding parameters

    图  3  线圈和电枢温升变化以及电枢速度曲线

    Figure  3.  Temperature rise of coil and armature and armature speed curve

    图  4  线圈发射器运动场计算结果

    Figure  4.  Calculation results of motion field of coil launcher

    图  5  单级线圈发射器结果(t=0.016 s)

    Figure  5.  Single-stage coil emitter results (t= 0.016 s)

    图  6  特定单元温度随时间变化图

    Figure  6.  Temperature variation of a specific unit over time

    图  7  试验原理图

    Figure  7.  Test capacitor discharge circuit diagram

    图  8  温度采集部分

    Figure  8.  Temperature acquisition section

    图  9  电枢中温度传感器布置图

    Figure  9.  Layout of temperature sensors

    图  10  线圈温度传感器布置图与实物图

    Figure  10.  Arrangements and photo of coil temperature sensors

    图  11  脉冲放电波形

    Figure  11.  Pulse discharge waveforms

    图  12  模型温度测量结果

    Figure  12.  Model temperature measurements

    表  1  电磁感应线圈发射器参数

    Table  1.   Electromagnetic induction coil launcher parameters

    internal diameter/mm thickness/mm length/mm turns internal diameter/mm length/mm capacitance/mF voltage/V
    armature coil power supply
    37.5 10 100 26 60 60 2 1 300
    下载: 导出CSV

    表  2  单级电磁感应线圈发射器结果对比

    Table  2.   Comparison of single stage electromagnetic induction coil transmitter results

    method comsol multiphysical field simulation current wire model method
    outlet velocity/(m·s-1) 8.286 8.827
    maximum speed/(m·s-1) 8.569 9.644
    maximum coil temperature/℃(t=0.016 s) 28.03 28.29
    armature maximum temperature/℃(t=0.016 s) 24.10 24.23
    maximum coil temperature/℃(whole process) 28.05 28.29
    armature maximum temperature/℃(whole process) 25.41 24.23
    下载: 导出CSV

    表  3  单级感应线圈发射器单次脉冲放电试验结果(t=100 s)

    Table  3.   Single pulse discharge test results of single-stage induction coil transmitter (t=100 s)

    test temperature/℃ simulation temperature/℃ error/%
    armature tail outer side 13.85 13.926 0.55
    inside armature tail 13.78 13.86 0.58
    1 cm from armature tail 13.91 13.947 0.27
    coil wire 17.25 18.38 6.1
    下载: 导出CSV
  • [1] Sterling T L, Salmon J, Becker D J, et al. How to build a Beowulf[M]. Cambridge: MIT Press, 1999.
    [2] Wang Y, Marshall R. Physics of electric launch[M]. Beijing: Science Press, 2004: 11-19.
    [3] Quan K B, Zhen H X, Hongxing W, et al. Thrust and thermal characteristics of electromagnetic launcher based on permanent magnet linear synchronous motors[J]. IEEE Trans Magnetics, 2009, 45(1): 358-362. doi:  10.1109/TMAG.2008.2008883
    [4] Engel T G, Nunnally W C, Gahl J M. High-efficiency helical coil electromagnetic 1auncher[R]. Columbia: University of Missouri, 2006.
    [5] Marder B. SLINGSHOT—A coilgun design code[R]. SAND2001-1780, 2001.
    [6] Zhang Y D, Ruan J, Wang Y, et al. Armature performance comparison of an induction coil launcher[J]. IEEE Trans Plasma Science, 2011, 39(1): 471-475. doi:  10.1109/TPS.2010.2049753
    [7] 张朝伟, 邓启斌, 汤磊, 等. 同步感应线圈炮电枢特性分析[J]. 火炮发射与控制学报, 2011, 17(3):14-18. (Zhang Chaowei, Deng Qibin, Tang Lei, et al. Armature characteristic analysis of synchronous induction coil gun[J]. Journal of Artillery Launch and Control, 2011, 17(3): 14-18 doi:  10.3969/j.issn.1673-6524.2011.03.004
    [8] Barmada S, Musolino A, Raugi M, et al. Analysis of the performance of a multi-stage pulsed linear induction launcher[J]. IEEE Trans Magnetics, 2001, 37(1): 111-115. doi:  10.1109/20.911802
    [9] 牛小波, 刘开培, 张亚东, 等. 基于电流丝法的多级同步感应线圈炮电枢温升计算[J]. 强激光与粒子束, 2015, 27:095001. (Niu Xiaobo, Liu Kaipei, Zhang Yadong, et al. Armature temperature rise calculation of multi-stage synchronous induction coil gun based on current filament method[J]. High Power Laser and Particle Beams, 2015, 27: 095001
    [10] Zhang T, Su Z, Guo W, et al. Research on the temperature field of multistage synchronous induction coilgun[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1295-1301. doi:  10.1109/TPS.2017.2705155
    [11] 刘守豹, 阮江军, 杜志叶, 等. 感应线圈炮性能的场路结合分析[J]. 电工技术学报, 2010, 25(12):1-7. (Liu Shoubao, Ruan Jiangjun, Du Zhiye, et al. Field circuit analysis of induction coil gun performance[J]. Journal of electrical technology, 2010, 25(12): 1-7
    [12] 刘守豹, 阮江军, 彭迎, 等. 改进电流丝法及其在感应线圈炮场路结合分析中的应用[J]. 中国电机工程学报, 2010, 30(30):128-134. (Liu Shoubao, Ruan Jiangjun, Peng Ying, et al. Improved current wire method and its application in the combination analysis of induction coil battery[J]. Chinese Journal of electrical engineering, 2010, 30(30): 128-134
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  38
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-15
  • 修回日期:  2019-11-11
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回