留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超宽带脉冲环境下射频滤波器非线性响应分析

陆希成 邱扬 武静 田锦 杨志强

陆希成, 邱扬, 武静, 田锦, 杨志强. 超宽带脉冲环境下射频滤波器非线性响应分析[J]. 仁和测试, 2020, 32(3): 033201. doi: 10.11884/HPLPB202032.190355
引用本文: 陆希成, 邱扬, 武静, 田锦, 杨志强. 超宽带脉冲环境下射频滤波器非线性响应分析[J]. 仁和测试, 2020, 32(3): 033201. doi: 10.11884/HPLPB202032.190355
Xicheng Lu, Yang Qiu, Jing Wu, Jin Tian, Zhiqiang Yang. Analysis on nonlinear response of RF filter under ultra wide band pulse environment[J]. Rhhz Test, 2020, 32(3): 033201. doi: 10.11884/HPLPB202032.190355
Citation: Xicheng Lu, Yang Qiu, Jing Wu, Jin Tian, Zhiqiang Yang. Analysis on nonlinear response of RF filter under ultra wide band pulse environment[J]. Rhhz Test, 2020, 32(3): 033201. doi: 10.11884/HPLPB202032.190355

超宽带脉冲环境下射频滤波器非线性响应分析

doi: 10.11884/HPLPB202032.190355
基金项目: 国家高技术发展计划项目(2015CB857100)
详细信息
    作者简介:

    陆希成(1977—),男,博士研究生,助理研究员,从事高功率微波效应方面的研究;luxcheng2012@163.com

  • 中图分类号: O441.5;TN601

Analysis on nonlinear response of RF filter under ultra wide band pulse environment

  • 摘要: 实验研究发现,射频滤波器在连续波和超宽带脉冲条件下其带外传输性能基本一致,但在带内某些频段,超宽带脉冲环境下滤波器的传递函数远大于1。此外,滤波器在超宽带脉冲下的时域响应还出现了脉冲振荡特征。针对这些现象,从滤波器的非线性无源互调和Q值效应的两个方面,分析了滤波器在超宽带脉冲作用下的响应机理,初步解释了上述现象。此外,通过不同辐射场强下的测量结果可知,滤波器无源互调还出现了非线性现象,使得测量结果的普适性受到一定限制。基于传递函数的预测结果表明,连续波测量结果的预测波形无论是从能量上还是从峰值功率上都明显小于实测结果。这些都反映出,滤波器在超宽带脉冲环境下的响应机理与在连续波环境下的响应机理明显不同,其预测结果也差异较大。也就是说,连续波测量结果不可用于超宽带脉冲的效应分析和评估。
  • 图  1  矢网测量得到的传递函数

    Figure  1.  Measured transfer function by VNA

    图  2  滤波器瞬态响应测量示意图

    Figure  2.  Measurement setup to determine the transient response of filter

    图  3  滤波器插入前耦合的超宽带信号

    Figure  3.  Coupled UWB signal without filter

    图  4  滤波器插入后耦合的超宽带信号

    Figure  4.  Coupled UWB signal with filter

    图  5  超宽带脉冲环境测量得到的传递函数

    Figure  5.  Measured transfer function under UWB pulses

    图  6  较小强度的超宽带脉冲环境测量得到的传递函数

    Figure  6.  Measured transfer function under lower intensity UWB pulses

    图  7  基于两个传递函数的预测波形与实测波形比较

    Figure  7.  Predicted results based on foregoing two transfer functions

  • [1] Lee K S H. EMP interaction: principle, techniques and reference data[M]. New York: Hemisphere, 1986.
    [2] Baum C E. From the electromagnetic pulse to high-power electromagnetics[J]. Proceedings of the IEEE, 1992, 80(6): 789-817. doi:  10.1109/5.149443
    [3] 王建国, 刘国治, 周金山. 微波孔缝线性耦合函数研究[J]. 强激光与粒子束, 2003, 15(11):1093-1099. (Wang Jianguo, Liu Guozhi, Zhou Jinshan. Investigations on function of linear coupling of microwaves into slots[J]. High Power Laser and Particle Beams, 2003, 15(11): 1093-1099
    [4] 陆希成, 王建国, 刘钰, 等. 基于天线辐射理论构建微波混沌腔的随机耦合模型[J]. 物理学报, 2013, 62:070504. (Lu Xicheng, Wang Jianguo, Liu Yu, et al. Based on antenna theory to establish the random coupling model of microwave chaotic cavities[J]. Acta Physica Sinica, 2013, 62: 070504 doi:  10.7498/aps.62.070504
    [5] Electromagnetic compatibility (EMC)—part 5-9: Installation and mitigation guidelines—System-level susceptibility assessments for HEMP and HPEM[S]. IEC 61000-5-9, 2009.
    [6] STD-MIL-220. Method of insertion loss measurement[S]. 2004.
    [7] Weber T, Krzikalla R, Haseborg J L. Linear and nonlinear filters suppressing UWB pulses[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 423-430. doi:  10.1109/TEMC.2004.831887
    [8] 王凯. 无线通信系统中的大功率滤波器研究[D]. 合肥: 合肥工业大学, 2009.

    Wang Kai. The study of high-power filters in wireless communication system. Hefei: Hefei University of Technology, 2009
    [9] Kodali V P. Engineering electromagnetic compatibility[M]. Beijing: Posts & Telecom Press, 2001.
    [10] Henrie J, Christianson A, Chappell W J. Prediction of passive intermodulation from coaxial connectors in microwave networks[J]. IEEE Trans Microwave Theory Tech, 2008, 56(1): 209-216. doi:  10.1109/TMTT.2007.912166
    [11] Christianson A, Henrie J J, Chappell W J. Higher order intermodulation product measurement of passive components[J]. IEEE Trans Microwave Theory Tech, 2008, 56(7): 1729-1736. doi:  10.1109/TMTT.2008.925238
    [12] 叶鸣, 肖怡, 陶长英, 等. 微带传输线的无源互调效应实验研究[J]. 电波科学学报, 2014, 29(3):471-475. (Ye Ming, Xiao Yi, Tao Changying, et al. Experimental research on passive intermodulation effect of microstrip lines[J]. Chinese Journal of Radio Science, 2014, 29(3): 471-475
    [13] Wilkerson J R, Lam P G, Grad K G, et al. Distributed passive intermodulation distortion on transmission lines[J]. IEEE Trans Microwave Theory Tech, 2011, 59(5): 1190-1205. doi:  10.1109/TMTT.2011.2106138
    [14] 毛煜茹, 刘莹, 谢拥军, 等. 金属接触非线性引起的无源互调效应的数值分析[J]. 电子学报, 2015, 43(6):1174-1178. (Mao Yuru, Liu Ying, Xie Yongjun, et al. Numerical analysis of passive intermodulation due to metallic contact nonlinearity[J]. Acta Electronica Sinica, 2015, 43(6): 1174-1178 doi:  10.3969/j.issn.0372-2112.2015.06.020
    [15] Henrie J, Christianson A, Chappell W. Linear-nonlinear interaction’s effect on the power dependence of nonlinear distortion products[J]. Appl Phys Lett, 2009, 94: 114101. doi:  10.1063/1.3098068
    [16] Henrie J, Christianson A, Chappell W. Linear-nonlinear interaction and passive intermodulation distortion[J]. IEEE Trans Microwave Theory Tech, 2010, 58(5): 1230-1237. doi:  10.1109/TMTT.2010.2045527
    [17] 邱扬, 王宗良, 田锦, 等. 用新型LC滤波器抑制设备中谐波的研究[J]. 电力电子技术, 2006, 40(1):50-52. (Qiu Yang, Wang Zongliang, Tian Jin, et al. Research on new LC filter in harmonic suppression of equipment[J]. Power Electronics, 2006, 40(1): 50-52 doi:  10.3969/j.issn.1000-100X.2006.01.018
    [18] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010.

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects. Beijing: Atomic Energy Press, 2010
  • 加载中
图(7)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  80
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-11-25
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回