留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低密度SiO2气凝胶的制备研究

鄢林 杨帆 罗炫 张林

鄢林, 杨帆, 罗炫, 张林. 超低密度SiO2气凝胶的制备研究[J]. 仁和测试, 2020, 32(3): 032004. doi: 10.11884/HPLPB202032.190447
引用本文: 鄢林, 杨帆, 罗炫, 张林. 超低密度SiO2气凝胶的制备研究[J]. 仁和测试, 2020, 32(3): 032004. doi: 10.11884/HPLPB202032.190447
Lin Yan, Fan Yang, Xuan Luo, Lin Zhang. Preparation of ultra-low density SiO2 aerogel[J]. Rhhz Test, 2020, 32(3): 032004. doi: 10.11884/HPLPB202032.190447
Citation: Lin Yan, Fan Yang, Xuan Luo, Lin Zhang. Preparation of ultra-low density SiO2 aerogel[J]. Rhhz Test, 2020, 32(3): 032004. doi: 10.11884/HPLPB202032.190447

超低密度SiO2气凝胶的制备研究

doi: 10.11884/HPLPB202032.190447
基金项目: 中国工程物理研究院超精密重点实验室基金项目(ZD18001);国家自然科学基金面上项目(11775201)
详细信息
    作者简介:

    鄢林:鄢 林(1996—),男,硕士研究生,从事纳米多孔材料、半导体光催化方面的研究;yanlin77@sina.cn

  • 中图分类号: O648

Preparation of ultra-low density SiO2 aerogel

  • 摘要: 超低密度的SiO2气凝胶是一种经典的三维网状纳米多孔材料,已经广泛应用于如保温隔热、吸附等多种领域。以四甲氧基硅烷(TMOS)为硅源,采用酸碱两步法,利用乙醇超临界干燥技术制备了超低密度的SiO2气凝胶,分别利用SEM\TEM\BET等表征手段对该气凝胶进行了一系列的研究,发现当其密度为0.6 mg/cm3时,气凝胶拥有最佳的综合性能。该种气凝胶具有超低密度、高比表面积、加工成型性好、制备周期短等优点,有望在激光惯性约束聚变实验中作为冷冻靶发挥巨大的作用。
  • 图  1  0.6 mg/cm3 SiO2气凝胶样品图

    Figure  1.  Photo of 0.6 mg/cm3 silica aerogels

    图  2  普通密度与超低密度SiO2气凝胶结构示意图

    Figure  2.  Schematic illustration of ordinary density and ultra-low density SiO2 aerogel

    图  3  0.6 mg/cm3 SiO2气凝胶扫描和透射和水接触角图像

    Figure  3.  SEM, TEM images and the contact angle value of 0.6 mg/cm3 silica aerogels

    图  4  0.6 mg/cm3 SiO2气凝胶的红外谱图和XRD谱图

    Figure  4.  FTIR spectrum and XRD pattern of 0.6 mg/cm3 silica aerogel

    图  5  0.6 mg/cm3二氧化硅气凝胶的等温吸脱附曲线和孔径分布曲线

    Figure  5.  N2 adsorption/desorption isotherms and pore size distributions of 0.6 mg/cm3 silica aerogels

  • [1] Kistler S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741.
    [2] Du A, Zhou B, Zhang Z, et al. A special material or a new state of matter: A review and reconsideration of the aerogel[J]. Materials, 2013, 6(3): 941-968. doi:  10.3390/ma6030941
    [3] Ciriminna R, Fidalgo A, Pandarus V, et al. The sol-gel route to advanced silica-based materials and recent applications[J]. Chemical Reviews, 2013, 113(8): 6592-6620. doi:  10.1021/cr300399c
    [4] Thapliyal P C, Singh K, Kirti S. Aerogels as promising thermal insulating materials: An overview[J]. Journal of Materials, 2014: 1-10.
    [5] Jang K Y, Kim K, Upadhye R S. Study of sol-gel processing for fabrication of hollow silica-aerogel spheres[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1990, 8(3): 1732-1735.
    [6] 谭秀兰, 刘颖, 刘晓波, 等. ICF靶用泡沫铜的制备与表征[J]. 强激光与粒子束, 2008, 20(9):1452-1456. (Tan Xiulan, Liu Ying, Liu Xiaobo, et al. Preparation and characterization of foamed copper for ICF[J]. High Power Laser and Particle Beams, 2008, 20(9): 1452-1456
    [7] Pan Y, He S, Gong L, et al. Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/water-glass co-precursor prepared by freeze drying[J]. Materials & Design, 2017, 113: 246-253.
    [8] 高银, 张林, 李泽甫, 等. 低密度Cu掺杂SiO2复合气凝胶的制备及表征[J]. 强激光与粒子束, 2014, 26:012003. (Gao Yin, Zhang Lin, Li Zefu, et al. Preparation and characterization of low-density Cu-doped SiO2 composite aerogels[J]. High Power Laser and Particle Beams, 2014, 26: 012003 doi:  10.3788/HPLPB20142601.12003
    [9] 徐超, 周斌, 吴广明, 等. 超低密度SiO2气凝胶的制备及成型研究[J]. 强激光与粒子束, 2005, 17(11):1674-1678. (Xu Chao, Zhou Bin, Wu Guangming, et al. Preparation and molding of ultralow-density silica aerogels[J]. High Power Laser and Particle Beams, 2005, 17(11): 1674-1678
    [10] 任洪波, 万小波, 张林, 等. 改性SiO2气凝胶制备及其在ICF实验中的应用[J]. 强激光与粒子束, 2006, 18(8):1307-1310. (Ren Hongbo, Wan Xiaobo, Zhang Lin, et al. Preparation of modified silica aerogel and its appilication in inertial confinement fusion (ICF) experiment[J]. High Power Laser and Particle Beams, 2006, 18(8): 1307-1310
    [11] 邓忠生, 魏建东, 王珏, 等. 低密度SiO2气凝胶的结构与吸附特性研究[J]. 强激光与粒子束, 1999, 11(2):215-219. (Deng Zhongsheng, Wei Jiandong, Wang Jue, et al. Structure and vapor adsorption of low-density silica aerogel[J]. High Power Laser and Particle Beams, 1999, 11(2): 215-219
    [12] Primout M, Babonneau D, Jacquet L, et al. A new hybrid target concept for multi-keV X-ray sources[J]. High Energy Density Physics, 2013, 9(4): 750-760. doi:  10.1016/j.hedp.2013.09.002
    [13] Hazi A. Lightweight target generates bright, energetic X-rays[R]. Lawrence Livermore National Laboratory, 2006.
  • 加载中
图(6)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  38
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 修回日期:  2019-12-31
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回