留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生咀嚼机器人弹性颞下颌关节设计与性能分析

秦文龙 丛明 任翔 温海营 刘冬

秦文龙, 丛明, 任翔, 温海营, 刘冬. 仿生咀嚼机器人弹性颞下颌关节设计与性能分析[J]. 仁和测试, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051
引用本文: 秦文龙, 丛明, 任翔, 温海营, 刘冬. 仿生咀嚼机器人弹性颞下颌关节设计与性能分析[J]. 仁和测试, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051
Wenlong QIN, Ming CONG, Xiang REN, Haiying WEN, Dong LIU. Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot[J]. Rhhz Test, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051
Citation: Wenlong QIN, Ming CONG, Xiang REN, Haiying WEN, Dong LIU. Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot[J]. Rhhz Test, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051

仿生咀嚼机器人弹性颞下颌关节设计与性能分析

doi: 10.7507/1001-5515.201812051
基金项目: 国家自然科学基金资助项目(51575078,51705063)
详细信息
    通讯作者:

    任翔,Email:renxiangdy@foxmail.com

Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot

Funds: National Natural Science Foundation of China
More Information
  • 摘要: 咀嚼机器人在义齿材料测试和下颌康复训练领域具有广阔的应用前景,而颞下颌关节的机构型式是影响咀嚼机器人性能表现的重要因素。鉴于目前弹性元件已在仿生机器人领域得到广泛应用,因此本文在点接触高副的基础上采用弹性元件模拟颞下颌关节内关节盘缓冲振荡的生物力学特点,形成弹性颞下颌关节机构型式;然后,本文探讨了弹性颞下颌关节对咀嚼机器人在自由度、运动学与动力学等方面的影响,根据关节面几何约束对颞下颌关节的位置与速度进行运动学分析,并进行基于拉格朗日方程的动力学分析;最后,使用响应面法对弹性元件预载荷以及刚度取值的影响进行分析。本文结果表明,弹性颞下颌关节能够有效保证关节的灵活运动与稳定受力。综上,本文所提出的弹性颞下颌关节机构方案进一步提升了咀嚼机器人仿生性,也为粘弹性关节盘的仿生设计提供了新思路。
  • 图  1  弹性颞下颌关节仿生结构与工作原理

    Figure  1.  Biomimetic structure of elastic temporomandibular joint and its working principle

    图  2  咀嚼机器人三维模型

    Figure  2.  3D model of the masticatory robot

    图  3  咀嚼机器人机构型式

    Figure  3.  Mechanism of the masticatory robot

    图  4  切牙咀嚼轨迹(相对于基坐标系{G})

    Figure  4.  Chewing trajectory of the incisor (in the ground coordinate system {G})

    图  5  弹簧变形量及变形速度

    Figure  5.  Deformation and changing rate of the spring

    图  6  电机驱动力与驱动功率

    Figure  6.  Driving force and driving power

    图  7  实验设计与响应面拟合

    Figure  7.  Design of experiments and fit of response surfaces

  • [1] 王嘉津, 左国坤, 张佳楫, 等. 腕功能康复机器人按需辅助控制策略研究. 生物医学工程学杂志, 2020, 37(1): 129-135.
    [2] 李亮, 丁辉, 王广志. 神经外科手术机器人运动学模型参数辨识及评价方法. 生物医学工程学杂志, 2019, 36(6): 994-1002.
    [3] RAO Y V D, Parimi A M, Rahul D P, et al. Robotics in dental implantation. Materials Today, 2017, 4(8): 9327-9332.
    [4] Ren L, Yang J, Tan Y, et al. An intelligent dental robot. Advanced Robotics, 2018, 32(12): 659-669. doi:  10.1080/01691864.2018.1482231
    [5] Wang Guifei, Ming Cong, Xiang Ren, et al. Chewing-cycle trajectory planning for a dental testing chewing robot. International Journal of Robotics and Automation, 2019. DOI:  10.2316/J.2019.206-5388.
    [6] Kalani H, Moghimi S, Akbarzadeh A. Toward a bio-inspired rehabilitation aid: sEMG-CPG approach for online generation of jaw trajectories for a chewing robot. Biomed Signal Process Control, 2019, 51: 285-295. doi:  10.1016/j.bspc.2019.02.022
    [7] Kizghin D A, Nelson C A. Optimal design of a parallel robot for dental articulation//2019 Design of Medical Devices Conference (DMD2019), Minnesota: University of Minnesota, 2019: 16-18.
    [8] Xu W, Bronlund J E. Mastication robots, Berlin: Springer-Verlag, 2010: 1-28.
    [9] Wang X, Xu P, Potgieter J, et al. Review of the biomechanics of TMJ//International Conference on Mechatronics and Machine Vision in Practice, Auckland: IEEE, 2012: 381-386.
    [10] 易新竹. 学. 北京: 人民卫生出版社, 2013.
    [11] 孙钟雷, 孙永海, 万鹏, 等. 仿生咀嚼装置设计与试验. 农业机械学报, 2011, 42(8): 214-218.
    [12] Cheng Chen, Xu Weiliang, Shang Jianzhong. Kinematics, stiffness and natural frequency of a redundantly actuated masticatory robot constrained by two point-contact higher kinematic pairs//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg: IEEE, 2015: 963-970.
    [13] Cheng Chen, Xu Weiliang, Shang Jianzhong. Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs. Nonlinear Dyn, 2015, 79(2): 1235-1255. doi:  10.1007/s11071-014-1739-9
    [14] Mostashiri N, Chen Cheng, Wang Jianxiao, et al. In-vitro measurement of reaction forces in the temporomandibular joints using a redundantly actuated parallel chewing robot//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong: IEEE, 2019: 1467-1472.
    [15] 杨廷力, 刘安心, 罗玉峰, 等. 机器人机构拓扑结构学. 北京: 科学出版社, 2012.
    [16] Wen Haiying, Xiang Ren, Ming Cong, et al. Force analysis and experiment of a redundantly actuated chewing robot//2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland: IEEE, 2017: 1-6.
    [17] 温海营, 任翔, 徐卫良, 等. 咀嚼机器人颞下颌关节仿生设计及试验测试. 吉林大学学报:工学版, 2019, 49(3): 943-952.
    [18] Wen Haiying, Ming Cong, Wang Guifei, et al. Dynamics and optimized torque distribution based force/position hybrid control of a 4-DOF redundantly actuated parallel robot with two point-contact constraints. Int J Control Autom Syst, 2019, 17(5): 1293-1303. doi:  10.1007/s12555-018-0429-7
    [19] Sagl B, Schmid-Schwap M, Piehslinger E, et al. A dynamic jaw model with a finite-element temporomandibular joint. Frontiers in Physiology, 2019, 10: 1156. doi:  10.3389/fphys.2019.01156
    [20] Commisso M S, Calvo-Gallego J L, Mayo J, et al. Quasi-linear viscoelastic model of the articular disc of the temporomandibular joint. Exp Mech, 2016, 56(7): 1169-1177. doi:  10.1007/s11340-016-0161-2
    [21] 中国国家标准化管理委员会. GB/T 2089-2009 普通圆柱螺旋压缩弹簧尺寸及参数(两端圈并紧磨平或制扁). 北京: 中国标准出版社, 2009.
    [22] 魏敦文, 葛文杰, 高涛. 仿生灵感下的弹性驱动器的研究综述. 机器人, 2017, 39(4): 541-550.
  • 加载中
图(7)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2020-03-13
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回