留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于加权 K-阶传播数的情绪脑网络分类研究

钱宇同 沈健 张家祯 何谈沁 黄丽亚

钱宇同, 沈健, 张家祯, 何谈沁, 黄丽亚. 基于加权 K-阶传播数的情绪脑网络分类研究[J]. 仁和测试, 2020, 37(3): 412-418. doi: 10.7507/1001-5515.201905039
引用本文: 钱宇同, 沈健, 张家祯, 何谈沁, 黄丽亚. 基于加权 K-阶传播数的情绪脑网络分类研究[J]. 仁和测试, 2020, 37(3): 412-418. doi: 10.7507/1001-5515.201905039
Yutong QIAN, Jian SHEN, Jiazhen ZHANG, Tanqin HE, Liya HUANG. Classification of emotional brain networks based on weighted K-order propagation number[J]. Rhhz Test, 2020, 37(3): 412-418. doi: 10.7507/1001-5515.201905039
Citation: Yutong QIAN, Jian SHEN, Jiazhen ZHANG, Tanqin HE, Liya HUANG. Classification of emotional brain networks based on weighted K-order propagation number[J]. Rhhz Test, 2020, 37(3): 412-418. doi: 10.7507/1001-5515.201905039

基于加权 K-阶传播数的情绪脑网络分类研究

doi: 10.7507/1001-5515.201905039
基金项目: 国家自然科学基金(61977039)
详细信息
    通讯作者:

    黄丽亚,Email:huangly@njupt.edu.cn

Classification of emotional brain networks based on weighted K-order propagation number

More Information
  • 摘要: 脑电信号与人类情绪具有强相关性,情绪脑网络的节点重要性研究为分析情绪脑机制提供了有效手段。本文采用一种新的节点重要性排序方法——加权 K-阶传播数法,设计实现了一种情绪脑网络的分类算法。首先基于 DEAP 情绪脑电数据构建互样本熵脑网络,对正、负情绪下的脑网络分别进行节点重要性排序,以获得多阈值尺度下的特征矩阵。然后通过特征提取和支持向量机实现对情绪的二分类,分类准确率达到 83.6%。结果表明采用加权 K-阶传播数法提取脑网络节点重要性特征进行情绪分类研究是有效的,为复杂网络的特征提取和分析提供了一种新的方法。
  • 图  1  加权 K-阶传播数的情绪脑网络分类算法步骤

    Figure  1.  The flow chart of emotional brain network classification algorithm based on weighted K-order propagation number

    图  2  矩阵 C 的奇异值分解过程

    Figure  2.  Singular value decomposition process of matrix C

    图  3  DEAP 数据集导联位置图

    Figure  3.  The channel location of the DEAP dataset

    图  4  负向情绪脑网络

    a. 邻接矩阵 A;b. 0-1 矩阵 B

    Figure  4.  Negative emotional brain network

    a. adjacency matrix A; b. 0-1matrix B

    图  5  某被试正向情绪脑网络在 T3T10T15T18 阈值下的网络拓扑图

    Figure  5.  Network topology of a positive emotional brain network under the threshold T3, T10, T15, and T18

    图  6  某被试负向情绪脑网络在 T3T10T15T18 阈值下的网络拓扑图

    Figure  6.  Network topology of a negative emotional brain network under the threshold T3, T10, T15, and T18

    图  7  某被试在 T13下的脑网络节点重要性示意图

    Figure  7.  The importance map of the brain network node corresponding to a subject under the threshold T13

    表  1  每名被试的 DEAP 数据集的数据组成

    Table  1.   DEAP dataset representation for each subject

    类别 数据维度 数据意义
    情绪数据 $40 \times 40 \times 8\;064$ 视频 × 导联 × 采样点
    标签 $40 \times 4$ 视频 × 标签(效价、唤醒度、
    喜欢度、优势度)
    下载: 导出CSV

    表  2  不同模型分类准确率结果比较

    Table  2.   Comparison between classification accuracies of different models

    模型 SVD PCA
    KNN 61.8% 66.2%
    决策树 51.5% 58.8%
    SVM 75.3% 83.6%
    下载: 导出CSV

    表  3  情绪二分类准确率结果比较

    Table  3.   Comparison between classification accuracies of our models and previous research for 2 classes

    文献 特征 模型 准确率
    Candra 等[2] 小波熵 SVM 65.1%
    Tripathi 等[3] 均值、中位数、最大值等 CNN 81.4%
    DNN 75.8%
    本文 基于加权 K-阶传播数节点重要性 SVM 83.6%
    下载: 导出CSV
  • [1] Mohammadpour M, Hashemi S M R, Houshmand N. Classification of EEG-based emotion for BCI applications//2017 Artificial Intelligence and Robotics (IRANOPEN). Qazvin: IEEE, 2017: 127-131.
    [2] Candra H, Yuwono M, Chai R, et al. Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine//The 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan: IEEE, 2015: 1-4.
    [3] Tripathi S, Acharya S, Sharma R D, et al. Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset//Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications. Palo Alto: AAAI Press, 2017: 4746-4752.
    [4] Wang N, Wang Y, Li Y, et al. Gamma oscillation in brain connectivity in emotion recognition by Granger causality//2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). Shanghai: IEEE, 2011: 762-766.
    [5] Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol, 2000, 278(6): H2039-H2049. doi:  10.1152/ajpheart.2000.278.6.H2039
    [6] Pincus S M, Viscarello R R. Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet Gynecol, 1992, 79(2): 249-255.
    [7] Ledoux J E. Emotion circuits in the brain. Annu Rev Neurosci, 2009, 23(23): 155-184.
    [8] 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用. 北京: 清华大学出版社, 2006.
    [9] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks. Nat Phys, 2010, 6(11): 888-893. doi:  10.1038/nphys1746
    [10] Berkhin P. A survey on pagerank computing. Internet Math, 2005, 2(1): 73-120. doi:  10.1080/15427951.2005.10129098
    [11] 黄丽亚, 霍宥良, 王青, 等. 基于K-阶结构熵的网络异构性研究. 物理学报, 2019, 68(1): 325-336.
    [12] 黄丽亚, 汤平川, 霍宥良, 等. 基于加权K-阶传播数的节点重要性研究. 物理学报, 2019, 68(12): 311-321.
    [13] Diego Rodriguez J, Perez A, Antonio Lozano J. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell, 2010, 32(3): 569-575. doi:  10.1109/TPAMI.2009.187
    [14] Koelstra S, Muhl C, Soleymani M, et al. DEAP: A database for emotion analysis using physiological signals. IEEE Trans Affect Comput, 2012, 3(1): 18-31. doi:  10.1109/T-AFFC.2011.15
    [15] Russell J A, Lewicka M, Niit T. A cross-cultural study of a circumplex model of affect. J Pers Soc Psychol, 1989, 57(5): 848-856. doi:  10.1037/0022-3514.57.5.848
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-14
  • 修回日期:  2019-12-18
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回