留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

血管内皮细胞条件培养基对肝癌细胞上皮-间质转化的影响

许博闻 何佳 高文博 苏冠月 刘肖珩 沈阳

许博闻, 何佳, 高文博, 苏冠月, 刘肖珩, 沈阳. 血管内皮细胞条件培养基对肝癌细胞上皮-间质转化的影响[J]. 仁和测试, 2020, 37(3): 442-449. doi: 10.7507/1001-5515.201907041
引用本文: 许博闻, 何佳, 高文博, 苏冠月, 刘肖珩, 沈阳. 血管内皮细胞条件培养基对肝癌细胞上皮-间质转化的影响[J]. 仁和测试, 2020, 37(3): 442-449. doi: 10.7507/1001-5515.201907041
Bowen XU, Jia HE, Wenbo GAO, Guanyue SU, Xiaoheng LIU, Yang SHEN. Effect of conditioned medium of vascular endothelial cells on the epithelial-mesenchymal transition of hepatocellular carcinoma cells[J]. Rhhz Test, 2020, 37(3): 442-449. doi: 10.7507/1001-5515.201907041
Citation: Bowen XU, Jia HE, Wenbo GAO, Guanyue SU, Xiaoheng LIU, Yang SHEN. Effect of conditioned medium of vascular endothelial cells on the epithelial-mesenchymal transition of hepatocellular carcinoma cells[J]. Rhhz Test, 2020, 37(3): 442-449. doi: 10.7507/1001-5515.201907041

血管内皮细胞条件培养基对肝癌细胞上皮-间质转化的影响

doi: 10.7507/1001-5515.201907041
基金项目: 国家自然科学基金资助项目(31870939,31570948)
详细信息
    通讯作者:

    沈阳,Email:shenyang24@126.com

Effect of conditioned medium of vascular endothelial cells on the epithelial-mesenchymal transition of hepatocellular carcinoma cells

Funds: The National Natural Science Foundation of China
More Information
  • 摘要: 本文旨在研究间接共培养条件下血管内皮细胞分泌或代谢产生的物质对于肝癌细胞上皮-间质转化(EMT)的影响。体外培养人肝癌细胞系 QGY-7703,并与人脐静脉内皮细胞(HUVEC)条件培养基进行共培养;倒置相差显微镜观察肝癌细胞形态学的变化;划痕实验分析肝癌细胞迁移能力的变化;Western blot 及免疫荧光实验检测条件培养基对肝癌细胞 EMT 相关蛋白表达及分布的影响。结果表明,共培养后,QGY-7703 细胞逐渐由多边形变为纺锤形,迁移能力显著提高,EMT 相关标志物的表达及分布均出现时序性变化。研究结果证实,间接共培养条件下,血管内皮细胞可诱导肝癌细胞发生 EMT。
  • 图  1  间接共培养条件下 QGY-7703 细胞形态的变化及长短轴之比的统计图

    标尺 = 10 μm;*,P < 0.05

    Figure  1.  The morphology changes of QGY-7703 cells under indirect co-culture condition and the statistical graph of the ratio of long axis to short axis

    scale bar = 10 μm; *, P < 0.05

    图  2  间接共培养条件下 QGY-7703 细胞迁移情况的显微镜照片及迁移距离的统计图

    标尺 = 500 μm;*,P < 0.05

    Figure  2.  The microscopy images of QGY-7703 cells migration under indirect co-culture condition and the statistical graph of migration distance

    scale bar = 500 μm; *, P < 0.05

    图  3  间接共培养条件下 QGY-7703 细胞中上皮标志物 E-cadherin 的表达水平和相对表达量的统计图

    *,P < 0.05

    Figure  3.  The expression level of epithelial marker E-cadherin in QGY-7703 cells under indirect co-culture condition and the statistical graph of relative expression

    *, P < 0.05

    图  4  间接共培养条件下 QGY-7703 细胞中间充质标志物 N-cadherin 和 Vimentin 的表达水平及相对表达量的统计图*,P < 0.05

    Figure  4.  The expression level of mesenchymal markers N-cadherin and Vimentin in QGY-7703 cells under indirect co-culture condition and the statistical graph of relative expression

    *, P < 0.05

    图  5  间接共培养条件下 QGY-7703 细胞中 E-cadherin 和 N-cadherin 分布的变化

    绿色荧光:E-cadherin;红色荧光:N-cadherin;标尺 = 20 μm

    Figure  5.  The changes of distribution of E-cadherin and N-cadherin in QGY-7703 cells under indirect co-culture condition

    green: E-cadherin; red: N-cadherin; scale bar = 20 μm

    图  6  间接共培养条件下 QGY-7703 细胞中 Vimentin 分布的变化

    红色荧光:Vimentin;蓝色荧光:细胞核;标尺 = 10 μm

    Figure  6.  The changes of distribution of Vimentin in QGY-7703 cells under indirect co-culture condition

    red: Vimentin; blue: nucleus; scale bar = 10 μm

  • [1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424. doi:  10.3322/caac.21492
    [2] Zeng Dongqiang, Li Meiyi, Zhou Rui, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res, 2019, 7(5): 737-750. doi:  10.1158/2326-6066.CIR-18-0436
    [3] Chandler K B, Costello C E, Rahimi N. Glycosylation in the tumor microenvironment: implications for tumor angiogenesis and metastasis. Cells, 2019, 8(6): 544. doi:  10.3390/cells8060544
    [4] 许成云, 倪庆桂, 张陆勇. 肿瘤微环境与肿瘤血管新生. 中国医疗前沿: 上半月, 2009, 4(5): 21-23, 90.
    [5] Shojaei F. Anti-angiogenesis therapy in cancer: Current challenges and future perspectives. Cancer Lett, 2012, 320(2): 130-137. doi:  10.1016/j.canlet.2012.03.008
    [6] Cheng X K, Lin W R, Jiang H, et al. MicroRNA-129-5p inhibits invasiveness and metastasis of lung cancer cells and tumor angiogenesis via targeting VEGF. Eur Rev Med Pharmaco, 2019, 23(7): 2827-2837.
    [7] Mirzaei S, Baghaei K, Parivar K, et al. The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition. Eur J Pharmacol, 2019, 857: 172426. doi:  10.1016/j.ejphar.2019.172426
    [8] 殷晓丽, 刘兆玉. 上皮间质转化在肿瘤中的研究进展. 医学综述, 2017, 23(12): 2359-2363, 2369. doi:  10.3969/j.issn.1006-2084.2017.12.015
    [9] Assani G, Zhou Yunfeng. Effect of modulation of epithelial-mesenchymal transition regulators Snail1 and Snail2 on cancer cell radiosensitivity by targeting of the cell cycle, cell apoptosis and cell migration/invasion. Oncol Lett, 2019, 17(1): 23-30.
    [10] 张彦璐, 陈影, 应国清. 上皮间质转化在肿瘤侵袭转移中的研究进展. 浙江化工, 2019, 50(7): 11-15. doi:  10.3969/j.issn.1006-4184.2019.07.003
    [11] Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol, 2018, 55: 30-35. doi:  10.1016/j.ceb.2018.06.008
    [12] 贾皑, 张璐, 任莉, 等. EMT 分子标志物在肝癌细胞系中的表达及其意义. 西安交通大学学报: 医学版, 2019, 40(4): 537-541.
    [13] Su Shan, Lin Xueyan, Ding Ning, et al. Effects of PARP-1 inhibitor and ERK inhibitor on epithelial mesenchymal transitions of the ovarian cancer SKOV3 cells. Pharmacol Rep, 2016, 68(6): 1225-1229. doi:  10.1016/j.pharep.2016.08.001
    [14] Sun Jingjing, Stathopoulos A. FGF controls epithelial-mesenchymal transitions during gastrulation by regulating cell division and apicobasal polarity. Development, 2018, 145(19): dev161927. doi:  10.1242/dev.161927
    [15] Kalcheim C. Epithelial-mesenchymal transitions during neural crest and somite development. J Clin Med, 2015, 5(1): 1. doi:  10.3390/jcm5010001
    [16] Ding Qiang, Xia Yujia, Ding Shuping, et al. Potential role of CXCL9 induced by endothelial cells/CD133+ liver cancer cells co-culture system in tumor transendothelial migration. Genes Cancer, 2016, 7(7/8): 254-259.
    [17] Kuang Youlin, He Weiyang, Liang Simin, et al. Prostaglandin E2 inhibits prostate cancer progression by countervailing tumor microenvironment-induced impairment of dendritic cell migration through LXR alpha/CCR7 pathway. J Immunol Res, 2018, 2018: 5808962.
    [18] Lacal P M, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1(VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol Res, 2018, 136: 97-107. doi:  10.1016/j.phrs.2018.08.023
    [19] Costanza B, Rademaker G, Tiamiou A, et al. Transforming growth factor beta-induced, an extracellular matrix interacting protein, enhances glycolysis and promotes pancreatic cancer cell migration. Int J Cancer, 2019, 145(6): 1570-1584. doi:  10.1002/ijc.32247
    [20] 沈良华, 吴璐华, 张仙丽, 等. PTBP1 通过 EMT 途径促进肝癌细胞的迁移与侵袭. 中国病理生理杂志, 2019, 35(10): 1819-1825.
    [21] Ye Zhiyu, Chen Xudong, Chen Xiaogang. ARK5 promotes invasion and migration in hepatocellular carcinoma cells by regulating epithelial-mesenchymal transition. Oncol Lett, 2018, 15(2): 1511-1516.
    [22] Zuo Jianhong, Wen Juan, Lei Mingsheng, et al. Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT. Med Oncol, 2016, 33(2): 15. doi:  10.1007/s12032-015-0716-6
    [23] 董保龙, 韩彩文, 史明, 等. 波形蛋白在肝细胞癌中的研究进展. 基础医学与临床, 2020, 40(2): 238-242. doi:  10.3969/j.issn.1001-6325.2020.02.020
    [24] Rawal P, Siddiqui H, Hassan M, et al. Endothelial cell-derived TGF-beta promotes epithelial-mesenchymal transition via CD133 in HBx-infected hepatoma cells. Front Oncol, 2019, 9: 308. doi:  10.3389/fonc.2019.00308
    [25] 张霞, 李惠萍. 上皮间质转化的分子标志物. 国际呼吸杂志, 2012, 32(17): 1358-1361. doi:  10.3760/cma.j.issn.1673-436X.2012.017.019
    [26] 徐晓强, 郭佳, 关锋. 膀胱癌细胞 YTS-1 的条件培养基诱导膀胱上皮细胞 HCV29 发生上皮间质转化和糖链表达变化. 生物学杂志, 2018, 35(5): 23-27. doi:  10.3969/j.issn.2095-1736.2018.05.023
    [27] 谢雨潇, 廖锐, 潘龙, 等. 肝星状细胞条件培养基激活 ERK1/2 通路诱导肝癌细胞增殖及上皮间质转化. 细胞与分子免疫学杂志, 2017, 33(2): 210-214, 219.
    [28] Zhuang J, Lu Q, Shen B, et al. TGFbeta1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep, 2015, 5: 11924. doi:  10.1038/srep11924
    [29] 雒强. CAF 来源的 exosome 促进前列腺癌细胞上皮间质转化. 天津: 天津医科大学, 2018.
  • 加载中
图(6)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-17
  • 修回日期:  2020-02-14
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回