留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Increased TRIM5 is associated with a poor prognosis and immune infiltration in glioma patients

Yue CHEN Qin LI Jie ZHANG Rui GU Kai LI Gang ZHAO Hang YUAN Tianyu FENG Deqiong OU Ping LIN

陈悦, 李琴, 张洁, 顾睿, 李凯, 赵岗, 袁航, 丰天宇, 欧德琼, 林苹. TRIM5 高表达与胶质瘤患者不良预后和免疫浸润的相关性研究[J]. 仁和测试, 2020, 37(3): 469-479. doi: 10.7507/1001-5515.202004064
引用本文: 陈悦, 李琴, 张洁, 顾睿, 李凯, 赵岗, 袁航, 丰天宇, 欧德琼, 林苹. TRIM5 高表达与胶质瘤患者不良预后和免疫浸润的相关性研究[J]. 仁和测试, 2020, 37(3): 469-479. doi: 10.7507/1001-5515.202004064
Yue CHEN, Qin LI, Jie ZHANG, Rui GU, Kai LI, Gang ZHAO, Hang YUAN, Tianyu FENG, Deqiong OU, Ping LIN. Increased TRIM5 is associated with a poor prognosis and immune infiltration in glioma patients[J]. Rhhz Test, 2020, 37(3): 469-479. doi: 10.7507/1001-5515.202004064
Citation: Yue CHEN, Qin LI, Jie ZHANG, Rui GU, Kai LI, Gang ZHAO, Hang YUAN, Tianyu FENG, Deqiong OU, Ping LIN. Increased TRIM5 is associated with a poor prognosis and immune infiltration in glioma patients[J]. Rhhz Test, 2020, 37(3): 469-479. doi: 10.7507/1001-5515.202004064

TRIM5 高表达与胶质瘤患者不良预后和免疫浸润的相关性研究

doi: 10.7507/1001-5515.202004064

Increased TRIM5 is associated with a poor prognosis and immune infiltration in glioma patients

Funds: The National Natural Science Foundation of China
More Information
  • 摘要: 三结构域蛋白家族 5(TRIM5)在自噬中起重要作用,并参与免疫和肿瘤进程,然而 TRIM5 在神经胶质瘤中的功能尚不清楚。本研究旨在通过生物信息学分析来评估 TRIM5 在胶质瘤中的作用。本研究神经胶质瘤数据库临床样本包括低级别神经胶质瘤(LGG)与多形性成胶质细胞瘤(GBM)。通过 Oncomine、基因表达谱交互分析(GEPIA)和癌症基因组图谱(TCGA)数据库探寻了 TRIM5 在胶质瘤组织中的表达。基于 TCGA 数据库,我们利用生存分析和多因素 Cox 回归分析评价 TRIM5 的预后作用。利用 STRING 数据库预测 TRIM5 相关蛋白网络,并通过 KEGG 富集分析预测 TRIM5 在胶质瘤中的潜在分子通路。此外,采用 CIBERSORT 和 TIMER 数据库进行免疫浸润分析。结果表明,与 Oncomine、GEPIA 和 TCGA 数据库中的正常样本相比,神经胶质瘤样本中的 TRIM5 表达明显上调。生存分析结果显示,较高的 TRIM5 表达与 LGG+GBM 患者以及 LGG 患者较差的总体生存(OS)有关,但与 GBM 患者 OS 无关。临床相关性分析结果显示,TRIM5 表达与年龄(χ2=44.31,P<0.001)、病理学分级(χ2=130.10,P<0.001)以及组织学类型(χ2=125.50,P<0.001)具有相关性。多因素 Cox 风险分析结果显示 TRIM5 表达(HR=1.48,95% CI=1.20~1.80,P<0.001)、年龄(HR=1.05,95% CI=1.03~1.10,P<0.001)以及病理学分级(HR=3.11,95% CI=2.30~4.20,P<0.001)是胶质瘤患者(LGG+GBM)预后的独立危险因素;TRIM5 表达(HR=1.82,95% CI=1.42~2.32,P<0.001)、年龄(HR=1.06,95% CI=1.05~1.08,P<0.001)、病理学分级(HR=1.92,95% CI=1.22~3.01,P=0.005)以及组织学类型(HR=0.71,95% CI=0.57~0.89,P=0.003)是 LGG 患者的独立预后因素。相互作用网络分析发现,IRF3、IRF7、OAS1、OAS2、OAS3、OASL、GBP1、PML、BTBD1 以及 BTBD2 蛋白与 TRIM5 具有相互作用。此外,KEGG 分析还发现细胞凋亡、肿瘤以及免疫相关通路在 TRIM5 升高时显著富集。免疫浸润分析显示,TRIM5 表达可以影响胶质瘤中活化 NK 细胞、单核细胞、活化肥大细胞、巨噬细胞等免疫细胞浸润水平。以上结果提示,TRIM5 在胶质瘤组织中显著上调,并与预后不良和免疫浸润相关。TRIM5 可能作为神经胶质瘤预后与指导免疫治疗的生物标志物。
  • Figure  1.  Elevated TRIM5 expression in glioma

    a. TRIM5 expression between cancer and normal tissues of Brain and CNS cancer in Oncomine; b. meta-analysis of TRIM5 expression in 4 analyses; c-f. TRIM5 expression in Murat Brain, Sun Brain and TCGA Brain

    Figure  2.  TRIM5 expression based on GEPIA database

    a. TRIM5 was notably increased in variety tumors; b. TRIM5 expression in LGG and GBM compared with normal control. *, P < 0.05

    Figure  3.  TRIM5 upregulation was associated with poor prognosis in glioma on TCGA database

    a–d. OS of LGG+GBM patients; e–h. OS of LGG patients; i–l. OS of GBM patients

    Figure  4.  The potential interaction networks prediction of TRIM5

    a. transcriptome prediction of TRIM5 in glioma in Oncomine database; b. TRIM5 protein interaction networks in STRING

    Figure  5.  Enrichment plots from GSEA analysis

    Figure  6.  The proportion of 22 immune cells effected by TRIM5 expression

    a. the ratio of 22 immune cells in glioma in low (blue) and high (red) TRIM5 expression groups, * P < 0.05; b. heat map of 22 immune cells in glioma samples

    Figure  7.  Correlation analyses between TRIM5 and immune infiltration

    Table  1.   Correlations between TRIM5 expression and clinicopathological characteristics in glioma patients (LGG+GBM)

    Parameters Cases (n=668) TRIM5 expression   χ2 P value
    Low (n=334) High (n=334)
    Age/year   44.310 <0.001
     ≤51 406 245 (73.35%) 161 (48.20%)
     >51 262 89 (26.65%) 173 (51.80%)
    Gender   2.930 1.711
     Female 283 152 (45.51%) 131 (39.22%)
     Male 385 181 (54.19%) 204 (61.08%)
    Grade  130.100 <0.001
     G2 247 170 (50.90%) 77 (23.05%)
     G3 262 145 (43.41%) 117 (35.03%)
     G4 159 19 (5.69%) 140 (41.92%)
    Histological  125.500 <0.001
     Astrocytoma 192 107 (32.03%) 85 (25.45%)
     Oligoastrocytoma 317 208 (62.28%) 109 (32.63%)
     GBM 159 19 (5.69%) 140 (41.92%)
    Positive results were highlighted in bold
    下载: 导出CSV

    Table  2.   Univariate and multivariate Cox analyses of OS in LGG+GBM patients

    Characteristics Univariate analysis Multivariate analysis
    HR 95% CI P value HR 95% CI P value
    Age 1.073 1.061−1.084 <0.000 1.047 1.035−1.060 <0.000
    Gender 1.124 0.858−1.471 0.396
    Grade 4.702 3.784−5.843 <0.000 3.110 2.300−4.206 <0.000
    Histological type 1.971 1.698−2.288 <0.000 0.886 0.754−1.041 0.140
    TRIM5 expression 2.808 2.342−3.366 <0.000 1.481 1.201−1.824 0.000
    Positive results were highlighted in bold
    下载: 导出CSV

    Table  3.   Univariate and multivariate Cox analyses of OS in LGG patients

    Characteristics Univariate analysis Multivariate analysis
    HR 95% CI P value HR 95% CI P value
    Age 1.065 1.048−1.081 <0.000 1.064 1.047−1.082 <0.000
    Gender 1.060 0.726−1.548 0.762
    Grade 3.120 2.061−4.723 <0.000 1.915 1.219−3.009 0.005
    Histological type 0.749 0.601−0.934 0.010 0.709 0.566−0.890 0.003
    TRIM5 expression 2.400 1.839−3.132 <0.000 1.816 1.419−2.322 <0.000
    Positive results were highlighted in bold
    下载: 导出CSV

    Table  4.   Results of part KEGG enrichment analyses

    Gene set name NES NOM p-val FDR q-val
    KEGG_PATHWAYS_IN_CANCER 1.705 0.002 0.045
    KEGG_SMALL_CELL_LUNG_CANCER 1.864 0.002 0.026
    KEGG_APOPTOSIS 2.021 0.002 0.033
    KEGG_LYSOSOME 1.958 0.004 0.025
    KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 1.965 0.002 0.047
    KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 1.926 0.000 0.022
    KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 1.745 0.032 0.038
    KEGG_PRIMARY_IMMUNODEFICIENCY 1.882 0.006 0.028
    Abbreviations: NES, normalized enrichment score
    下载: 导出CSV
  • [1] Chen R, Smith-Cohn M, Cohen A L, et al. Glioma subclassifications and their clinical significance. Neurotherapeutics, 2017, 14(2): 284-297. doi:  10.1007/s13311-017-0519-x
    [2] Bonavia R, Inda M M, Cavenee W K, et al. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res, 2011, 71(12): 4055-4060. doi:  10.1158/0008-5472.CAN-11-0153
    [3] Liu Q, Zhang C, Yuan J, et al. PTK7 regulates Id1 expression in CD44-high glioma cells. Neuro Oncol, 2015, 17(4): 505-515. doi:  10.1093/neuonc/nou227
    [4] Malta T M, De Souza C F, Sabedot T S, et al. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol, 2018, 20(5): 608-620. doi:  10.1093/neuonc/nox183
    [5] Ceccarelli M, Barthel F P, Malta T M, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell, 2016, 164(3): 550-563. doi:  10.1016/j.cell.2015.12.028
    [6] Mandell M A, Jain A, Arko-Mensah J, et al. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell, 2014, 30(4): 394-409. doi:  10.1016/j.devcel.2014.06.013
    [7] Mandell M A, Kimura T, Jain A, et al. TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction. Autophagy, 2014, 10(12): 2387-2388. doi:  10.4161/15548627.2014.984278
    [8] Srihari S, Ragan M A. Systematic tracking of dysregulated modules identifies novel genes in cancer. Bioinformatics, 2013, 29(12): 1553-1561. doi:  10.1093/bioinformatics/btt191
    [9] Leal F E, Menezes S M, Costa E A S, et al. Comprehensive antiretroviral restriction factor profiling reveals the evolutionary imprint of the ex vivo and in vivo IFN-beta response in HTLV-1-associated neuroinflammation. Front Microbiol, 2018, 9: 985. doi:  10.3389/fmicb.2018.00985
    [10] Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucleic Acids Res, 2006, 34(Database issue): D322-D326.
    [11] Murat A, Migliavacca E, Gorlia T, et al. Stem cell-related "self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol, 2008, 26(18): 3015-3024. doi:  10.1200/JCO.2007.15.7164
    [12] Sun L, Hui A M, Su Q, et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell, 2006, 9(4): 287-300. doi:  10.1016/j.ccr.2006.03.003
    [13] Blum A, Wang P, Zenklusen J C. SnapShot: TCGA-analyzed tumors. Cell, 2018, 173(2): 530. doi:  10.1016/j.cell.2018.03.059
    [14] Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res, 2017, 45(W1): W98-W102. doi:  10.1093/nar/gkx247
    [15] Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res, 2013, 41(Database issue): D808-D815.
    [16] Subramanian A, Kuehn H, Gould J, et al. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics, 2007, 23(23): 3251-3253. doi:  10.1093/bioinformatics/btm369
    [17] Liu X, Wu S, Yang Y, et al. The prognostic landscape of tumor-infiltrating immune cell and immunomodulators in lung cancer. Biomed Pharmacother, 2017, 95: 55-61. doi:  10.1016/j.biopha.2017.08.003
    [18] Li T, Fan J, Wang B, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res, 2017, 77(21): e108-e110. doi:  10.1158/0008-5472.CAN-17-0307
    [19] Chen J, Wang Z, Wang W, et al. SYT16 is a prognostic biomarker and correlated with immune infiltrates in glioma: A study based on TCGA data. Int Immunopharmacol, 2020, 84: 106490. doi:  10.1016/j.intimp.2020.106490
    [20] Nowak A K, Maujean J E, Jackson M, et al. A prospective study of surgical patterns of care for high grade glioma in the current era of multimodality therapy. J Clin Neurosci, 2011, 18(2): 227-231. doi:  10.1016/j.jocn.2010.05.009
    [21] Atkins R J, Ng W, Stylli S S, et al. Repair mechanisms help glioblastoma resist treatment. J Clin Neurosci, 2015, 22(1): 14-20. doi:  10.1016/j.jocn.2014.09.003
    [22] Wen P Y, Kesari S. Malignant gliomas in adults. N Engl J Med, 2008, 359(5): 492-507. doi:  10.1056/NEJMra0708126
    [23] Lin L, Cai J, Jiang C. Recent advances in targeted therapy for glioma. Curr Med Chem, 2017, 24(13): 1365-1381.
    [24] Sanchez-Martin P, Komatsu M. Physiological stress response by selective autophagy. J Mol Biol, 2020, 432(1): 53-62. doi:  10.1016/j.jmb.2019.06.013
    [25] Keown J R, Black M M, Ferron A, et al. A helical LC3-interacting region mediates the interaction between the retroviral restriction factor Trim5alpha and mammalian autophagy-related ATG8 proteins. J Biol Chem, 2018, 293(47): 18378-18386. doi:  10.1074/jbc.RA118.004202
    [26] Imam S, Talley S, Nelson R S, et al. TRIM5alpha degradation via autophagy is not required for retroviral restriction. J Virol, 2016, 90(7): 3400-3410. doi:  10.1128/JVI.03033-15
    [27] White E. The role for autophagy in cancer. J Clin Invest, 2015, 125(1): 42-46. doi:  10.1172/JCI73941
    [28] Mathew R, Karp C M, Beaudoin B, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell, 2009, 137(6): 1062-1075. doi:  10.1016/j.cell.2009.03.048
    [29] Mathew R, Kongara S, Beaudoin B, et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev, 2007, 21(11): 1367-1381. doi:  10.1101/gad.1545107
    [30] Karantza-Wadsworth V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev, 2007, 21(13): 1621-1635. doi:  10.1101/gad.1565707
    [31] Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006, 10(1): 51-64. doi:  10.1016/j.ccr.2006.06.001
    [32] Guo J Y, Chen H Y, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev, 2011, 25(5): 460-470. doi:  10.1101/gad.2016311
    [33] Yang S, Wang X, Contino G, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev, 2011, 25(7): 717-729. doi:  10.1101/gad.2016111
    [34] Ulasov I V, Lenz G, Lesniak M S. Autophagy in glioma cells: An identity crisis with a clinical perspective. Cancer Lett, 2018, 428: 139-146. doi:  10.1016/j.canlet.2018.04.034
    [35] Giatromanolaki A, Sivridis E, Mitrakas A, et al. Autophagy and lysosomal related protein expression patterns in human glioblastoma. Cancer Biol Ther, 2014, 15(11): 1468-1478. doi:  10.4161/15384047.2014.955719
    [36] Vergara G A, Eugenio G C, Malheiros S M F, et al. RIPK3 is a novel prognostic marker for lower grade glioma and further enriches IDH mutational status subgrouping. J Neurooncol, 2020. DOI:  10.1007/s11060-020-03473-0.
    [37] Zhang J, Hu M M, Shu H B, et al. Death-associated protein kinase 1 is an IRF3/7-interacting protein that is involved in the cellular antiviral immune response. Cell Mol Immunol, 2014, 11(3): 245-252. doi:  10.1038/cmi.2013.65
    [38] Hatesuer B, Hoang H T, Riese P, et al. Deletion of Irf3 and Irf7 genes in mice results in altered interferon pathway activation and granulocyte-dominated inflammatory responses to influenza A infection. J Innate Immun, 2017, 9(2): 145-161. doi:  10.1159/000450705
    [39] Zhou A, Paranjape J, Brown T, et al. Interferon action and apoptosis are defective in mice devoid of 2', 5'-oligoadenylate-dependent RNase L. EMBO J, 1997, 16(21): 6355-663. doi:  10.1093/emboj/16.21.6355
    [40] Miyazato K, Hayakawa Y. Pharmacological targeting of natural killer cells for cancer immunotherapy. Cancer Sci, 2020. DOI:  10.1111/cas.14418.
    [41] Muller-Hermelink N, Braumuller H, Pichler B, et al. TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell, 2008, 13(6): 507-518. doi:  10.1016/j.ccr.2008.04.001
    [42] Morvan M G, Lanier L L. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer, 2016, 16(1): 7-19. doi:  10.1038/nrc.2015.5
    [43] Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer, 2019, 120(1): 16-25. doi:  10.1038/s41416-018-0333-1
    [44] Kumar R, De Mooij T, Peterson T E, et al. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane. PLoS One, 2017, 12(6): e0179012. doi:  10.1371/journal.pone.0179012
    [45] Attarha S, Roy A, Westermark B, et al. Mast cells modulate proliferation, migration and stemness of glioma cells through downregulation of GSK3beta expression and inhibition of STAT3 activation. Cell Signal, 2017, 37: 81-92. doi:  10.1016/j.cellsig.2017.06.004
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-05-11
  • 刊出日期:  2020-03-17

目录

    /

    返回文章
    返回