周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线[J]. 仁和官网, 2023, 72(1): 013402. DOI: 10.7498/aps.72.20221628
引用本文: 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线[J]. 仁和官网, 2023, 72(1): 013402. DOI: 10.7498/aps.72.20221628
Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities[J]. rhhz, 2023, 72(1): 013402. DOI: 10.7498/aps.72.20221628
Citation: Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities[J]. rhhz, 2023, 72(1): 013402. DOI: 10.7498/aps.72.20221628

近玻尔速度不同离子碰撞产生Al的K X射线

K-shell X-ray of Al produced by collisions of ions with near Bohr velocities

  • 摘要: 在玻尔速度附近能区, 测量了H+, He2+和I22+, Xe20+离子作用于Al靶时碰撞激发靶的K壳层X射线. 得到了相应X射线的发射截面, 并与不同理论模型进行对比. 研究表明, 单核子能量相同时, 轻离子入射激发的X射线产生截面比高电荷态重离子轰击时小了大约4个数量级. 质子、He2+离子激发的实验截面可以由ECPSSR理论来很好的估算, 而I22+, Xe20+的实验结果与考虑有效电荷、低速库仑偏转修正的BEA理论计算符合较好.

     

    Abstract: X-ray emissionproduced by highly charged ions with the energy range near the Bohr velocity involves complicated atomic process. However, duo to the limitation of experimental conditions, the relevant researches are nearly absent. It is unclear whether the existing theory is applicable in such an energy range. This needs further exploring. In the present work, K X-ray spectra of Al excited by H+, He2+ and highly charged heavy ions I22+ and Xe20+ are investigated by using an Si drift X-ray detector in the energy range near the Bohr velocity. The X-ray production cross sections are extracted from the X-ray counts and compared with the theoretical simulations from PWBA, ECPSSR and modified BEA model. It is indicated that the cross section increases with the augment of projectile energy. With the same incident energy per nucleon, the cross section induced by highly charged heavy ions is a factor of about 104 larger than that by light ions . With the impact of H+ and He2+ ions, the K-shell electrons are mainly knocked off through the direct Coulomb ionization, and the X-ray emission cross section can be well predicted by ECPSSR theory. For the bombardment of highly charged heavy ions I22+ and Xe20+, except for the Coulomb ionization, the orbital electrons can also be excited by electron capture. The BEA simulation after being modified by both Coulomb repulsion and effective charge can well predict the X-ray production cross section.

     

/

返回文章
返回