尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能[J]. 仁和官网, 2023, 72(1): 018101. DOI: 10.7498/aps.72.20221640
引用本文: 尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能[J]. 仁和官网, 2023, 72(1): 018101. DOI: 10.7498/aps.72.20221640
Yu Yuan, Xing Ruo-Fei, Du Hui-Tian, Zhou Qian, Fan Ji-Hui, Pang Zhi-Yong, Han Sheng-Hao. Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value[J]. rhhz, 2023, 72(1): 018101. DOI: 10.7498/aps.72.20221640
Citation: Yu Yuan, Xing Ruo-Fei, Du Hui-Tian, Zhou Qian, Fan Ji-Hui, Pang Zhi-Yong, Han Sheng-Hao. Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value[J]. rhhz, 2023, 72(1): 018101. DOI: 10.7498/aps.72.20221640

通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能

Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value

  • 摘要: 氧化镍作为一种低成本、高稳定性的空穴传输材料, 在近些年被广泛地应用在反式钙钛矿太阳能电池中. 制备氧化镍空穴传输层最常用的方法是旋涂氧化镍纳米颗粒分散液, 因此对氧化镍颗粒粒度以及溶液加工性能提出了很高的要求. 本文通过精确控制合成过程中体系pH值, 实现了对氧化镍纳米颗粒粒度的调控, 进而制备了高质量的氧化镍空穴传输层. 实验表明合成体系pH值为9.5—9.8时, 可以制得平均粒径为5—10 nm的氧化镍纳米颗粒, 并且纳米颗粒具有良好的分散稳定性. 此外, 通过对氧化镍纳米颗粒进行结构成分分析, 发现由pH值调控的粒径变化并不会引起颗粒物质结构和成分的改变. 通过表面形貌分析, 由pH值调控获得的颗粒可制成致密且具有较小的粗糙度的薄膜, 该薄膜展现出良好的空穴抽取能力. 基于该薄膜的钙钛矿太阳能电池(MAPbI3)获得了17.39%的光电转化效率, 并且几乎没有迟滞现象. 本文的实验结果表明, 通过pH值精细调控氧化镍纳米颗粒粒度可以有效提升钙钛矿太阳能电池的性能. 本文的研究有望促进基于高性能氧化镍空穴传输层的钙钛矿太阳能电池研究.

     

    Abstract: As a low-cost, high stable hole transport material, nickel oxide has been widely used in inverted structure perovskite solar cells in recent years. By far, the most common method of preparing nickel oxide hole transport layers is spin-coating pre-prepared nickel oxide nanoparticles (NiOx NPs), which puts forward high requirement for the particle sizes and solution processing capabilities of NiOx NPs. In this work, the sizes of NiOx NPs are precisely controlled by adjusting the pH value of the system in the synthesis process, and high-quality nickel oxide hole transport layers are then prepared. The experimental results exhibit that the NiOx NPs with sizes of 5–10 nm are obtained at a pH value in a range of 9.5–9.8. More interestingly, the obtained NiOx NPs have good dispersion stability and can achieve long-term dispersion in aqueous solution. Furthermore, the structural composition analysis of NiOx NPs shows that the pH value of the synthesis system does not have a significant effect on the material structure nor composition of the NiOx NP. Surface morphological analysis shows that the NiOx film prepared by the pH-controlled NiOx NPs is rather dense and particularly flat with small surface roughness. It is also found that the film exhibits good hole extraction capability. We also fabricate an inverted perovskite solar cell based on the NiOx film. The device structure is ITO/NiOx/CH3NH3PbI3/PC61BM/Bphen/Ag. It yields a good photovoltaic conversion efficiency (17.39%). In addition, the device is almost hysteresis-free. Our experimental results exhibit that the performance of perovskite solar cells can be effectively improved by precisely controlling the sizes of NiOx NPs through pH values. Our work is expected to facilitate the development of NiOx-based perovskite solar cells.

     

/

返回文章
返回