张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟[J]. 仁和官网, 2023, 72(1): 013701. DOI: 10.7498/aps.72.20221674
引用本文: 张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟[J]. 仁和官网, 2023, 72(1): 013701. DOI: 10.7498/aps.72.20221674
Zhang Hong-Shuo, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin. Simulation of Coulomb crystal structure and motion trajectory of calcium ions in linear ion trap[J]. rhhz, 2023, 72(1): 013701. DOI: 10.7498/aps.72.20221674
Citation: Zhang Hong-Shuo, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin. Simulation of Coulomb crystal structure and motion trajectory of calcium ions in linear ion trap[J]. rhhz, 2023, 72(1): 013701. DOI: 10.7498/aps.72.20221674

线型离子阱中钙离子库仑晶体结构和运动轨迹模拟

Simulation of Coulomb crystal structure and motion trajectory of calcium ions in linear ion trap

  • 摘要: 离子阱中囚禁的离子在满足库仑耦合条件下, 会形成库仑晶体, 其结构分布和运动轨迹由离子阱的参数和离子种类决定. 本文采用分子动力学模拟软件LAMMPS和(py)LIon程序包, 仿真了40Ca+在线型离子阱中库仑晶体的形成过程, 以及不同位置离子的微运动和宏运动轨迹. 另外, 本文还对混入少量同位素离子(44Ca+)和氢化钙离子(CaH+)后的40Ca+晶体结构进行了仿真, 并对混入前后形成的库仑晶体结构变化进行对比和分析, 期望能对离子阱实验中形成的暗离子进行识别和处理.

     

    Abstract: Coulomb crystals have applications in many areas such as quantum computing and simulation, quantum logic spectroscopy, nonlinear dynamics and chaos, phase transitions, and chemical reaction process. The structure of the Coulomb crystal and the trajectory of each trapped ion are typically determined by the parameters of the trap and the ion species. However, dark ions are often inevitable in experiment, which introduces uncertainty into the desired crystal structures and ion trajectories. Few researches have been conducted to investigate the configuration change of the crystal in the presence of dark ions and the influence of a dark ion on its surrounding ion trajectories in a multi-ion system. In this work, we utilize the molecular dynamics simulation software LAMMPS and the (py)LIon package (modified to adapt the semi-classical theory of laser cooling) for simulating the three-dimensional ion trajectories of Coulomb crystals. The formation process of 40Ca+ Coulomb crystal in a linear trap is simulated. With the micromotion and secular motion trajectories of each ion, we calculate the temperature of Coulomb crystal and the average velocity of specific ions. It is observed that the crystal structure exhibits obvious layering phenomenon when the trapped ions yield a large difference in their charge-to-mass ratio (CMR), however, layering is not obvious with a small difference in the CMR. In addition, we simulate and compare the Coulomb crystal structure formed by pure 40Ca+ ions with that formed by 40Ca+ ions mixed with a small number of dark ions including isotopic ions (44Ca+) and impurity ions (CaH+). Three different cases are investigated, namely the one-dimensional ion string, two-dimensional planar structure and three-dimensional helical structure. The results show that the ions in the neighborhood of a dark ion exhibit around micron-order position change compared with their positions before the dark ion is formed. Such a change can be measured in experiment through microscopic imaging, thereby providing a way to identify the formation of dark ions in Column crystals with a large ion number.

     

/

返回文章
返回